The Ph.D. in Analytics and Data Science is an advanced degree with a dual focus of application and research - where students will engage in real world business problems, which will inform and guide their research interests.
To ensure that our Ph.D. students in Analytics and Data Science are exposed to the latest issues and challenges of working across a wide variety of data contexts, individuals will be required to engage with one (or more) of the dozens of organizations which have agreed to sponsor doctorate-level projects for a minimum of three semesters (9 credit hours of engagement + 15 credit hours of dissertation research). These organizations span the continuum of application domains, including health care, banking, retail, government, and consumer finance. Students will also continue to work with the faculty adviser through their final year of project engagement and dissertation research.
The materials in this collection consists of research conducted by PhD candidates as a means to showcase the important work being done in the program.
Time to Submit Your Literature?Submissions from 2023
A Multistage Framework for Detection of Very Small Objects, Duleep Rathgamage Don, Ramazan Aygun, and Mahmut Karakaya
Submissions from 2022
Applications of Integrated Gradients in Credit Risk Modeling, Md Shafiul Alam, Jonathan Boardman, Xiao Huang, and Matthew Turner
A New Kind of Data Science: The Need for Ethical Analytics, Jonathan Boardman
Integrated Gradients is a Nonlinear Generalization of the Industry Standard Approach to Variable Attribution for Credit Risk Models, Jonathan Boardman, Md Shafiul Alam, Xiao Huang, and Ying Xie
ExplainabilityAudit: An Automated Evaluation of Local Explainability in Rooftop Image Classification, Duleep Rathgamage Don, Jonathan Boardman, Sudhashree Sayenju, Ramazan Aygun, Yifan Zhang, Bill Franks, Sereres Johnston, George Lee, Dan Sullivan, and Girish Modgil
Directional Pairwise Class Confusion Bias and Its Mitigation, Sudhashree Sayenju, Ramazan Aygun PhD, Jonathan Boardman, Duleep Prasanna Rathgamage Don, Yifan Zhang PhD, Bill Franks, Sereres Johnston PhD, George Lee, Dan Sullivan, and Girish Modgil PhD
Submissions from 2020
Fusion-Net: Integration of Dimension Reduction and Deep Learning Neural Network for Image Classification, Mohammad Masum and Philippe Laval
Genetic Algorithm Guidance of a Constraint Programming Solver for the Multiple Traveling Salesman Problem, Jessica M. Rudd, Andrew M. Henshaw, Lauren Staples, Sanjoosh Akkineni, Lin Li, and Joe DeMaio
A XGBoost risk model via feature selection and Bayesian hyper-parameter optimization, Yan Wang and Sherry Ni
Developing and improving risk models using machine-learning based algorithms, Yan Wang and Sherry Ni
Predicting class-imbalanced business risk using resampling, regularization, and model ensembling algorithms, Yan Wang and Sherry Ni
An Automatic Interaction Detection Hybrid Model for Bankcard Response Classification, Yan Wang, Sherry Ni, and Brian Stone
A two-stage hybrid model by using artificial neural networks as feature construction algorithms, Yan Wang, Sherry Ni, and Brian Stone
Improving Investment Suggestions for Peer-to-Peer (P2P) Lending via Integrating Credit Scoring into Profit Scoring, Yan Wang and Xuelei Sherry Ni
Risk Prediction of Peer-to-Peer Lending Market by a LSTM Model with Macroeconomic Factor, Yan Wang and Xuelei Sherry Ni
Improving risk modeling via feature selection, hyper-parameter adjusting, and model ensembling, Yan Wang, Xuelei Sherry Ni, and Jennifer Priestley
Submissions from 2019
Radically Simplifying Gated Recurrent Architectures Without Loss of Performance, Jonathan Boardman and Ying Xie
Evaluating the Impact of Proactive Care Management with IDStrat, D.J. Donahue and Lauren Staples
Outcome Prediction in Intensive Care Unit Settings with Claims Data, Lauren Staples and Ryan Rimby
A Product Affinity Segmentation Framework, Lili Zhang, Jennifer Priestley, Joseph DeMaio, and Sherry Ni
A Descriptive Study of Variable Discretization and Cost-Sensitive Logistic Regression on Imbalanced Credit Data, Lili Zhang, Jennifer Priestley, Herman Ray, and Soon Tan
Submissions from 2018
A Comparison of Machine Learning Algorithms for Prediction of Past Due Service in Commercial Credit, Liyuan Liu M.A, M.S. and Jennifer Lewis Priestley Ph.D.
Automatic Knowledge Extraction from OCR Documents Using Hierarchical Document Analysis, Mohammad Masum, Sai Kosaraju, Tanju Bayramoglu, Girish Modgil, and Mingon Kang
The Validity of Online Patient Ratings of Physicians: Analysis of Physician Peer Reviews and Patient Ratings, Jennifer L. Priestley, Yiyun Zhou, and Robert McGrath
A Comparison of the Predictive Ability of Logistic Regression and Time Series Analysis on Business Credit Data, Lauren Staples
COMPARISON OF BANKRUPTCY PREDICTION MODELS WITH PUBLIC RECORDS AND FIRMOGRAPHICS, Lili Zhang, Jennifer Priestley, and Xuelei Ni
Influence of the Event Rate on Discrimination Abilities of Bankruptcy Prediction Models, Lili Zhang, Jennifer Priestley, and Xuelei Ni
Submissions from 2017
Application of Support Vector Machine Modeling and Graph Theory Metrics for Disease Classification, Jessica M. Rudd
A Comparison of Decision Tree with Logistic Regression Model for Prediction of Worst Non-Financial Payment Status in Commercial Credit, Jessica M. Rudd MPH, GStat and Jennifer L. Priestley
Logistic Ensemble Models, Bob Vanderheyden and Jennifer L. Priestley
Binary Classification on Past Due of Service Accounts using Logistic Regression and Decision Tree, Yan Wang and Jennifer L. Priestley
A Sentiment-Change-Driven Event Discovery System, Lili Zhang, Ying Xie, and Guoliang Liu
Submissions from 2016
An Analysis of Accuracy using Logistic Regression and Time Series, Edwin Baidoo and Jennifer L. Priestley
A Comparison of Machine Learning Techniques and Logistic Regression Method for the Prediction of Past-Due Amount, Jie Hao and Jennifer L. Priestley
Application of Isotonic Regression in Predicting Business Risk Scores, Linh T. Le and Jennifer L. Priestley