Department
Statistics and Analytical Sciences
Document Type
Article
Submission Date
2016
Abstract
This paper analyzes the accuracy rates for logistic regression and time series models. It also examines a relatively new performance index that takes into consideration the business assumptions of credit markets. Although prior research has focused on evaluation metrics, such as AUC and Gini index, this new measure has a more intuitive interpretation for various managers and decision makers and can be applied to both Logistic and Time Series models.