Department
Statistics and Analytical Sciences
Document Type
Article
Submission Date
7-31-2017
Abstract
Disease classification is a crucial element of biomedical research. Recent studies have demonstrated that machine learning techniques, such as Support Vector Machine (SVM) modeling, produce similar or improved predictive capabilities in comparison to the traditional method of Logistic Regression. In addition, it has been found that social network metrics can provide useful predictive information for disease modeling. In this study, we combine simulated social network metrics with SVM to predict diabetes in a sample of data from the Behavioral Risk Factor Surveillance System. In this dataset, Logistic Regression outperformed SVM with ROC index of 81.8 and 81.7 for models with and without graph metrics, respectively. SVM with a polynomial kernel had ROC index of 72.9 and 75.6 for models with and without graph metrics, respectively. Although this did not perform as well as Logistic Regression, the results are consistent with previous studies utilizing SVM to classify diabetes.
Included in
Applied Statistics Commons, Biostatistics Commons, Disease Modeling Commons, Statistical Models Commons