Date of Award

Spring 5-5-2022

Track

Chemistry

Degree Type

Thesis

Degree Name

Master of Science in Chemical Sciences (MSCB)

Department

Chemistry

Committee Chair/First Advisor

Thomas C. Leeper

Committee Member

Susan M.E. Smith

Committee Member

Jonathan L. McMurry

Abstract

Conjugated polymers have become highly attractive as they afford unique material properties that make them promising for a wide range of applications, such as photovoltaics and drug delivery systems. However, these conjugated polymers require extensive synthetic steps involving hazardous organic solvents or metal-based catalysts yielding toxic waste streams. To remedy this, enzymes have emerged as a highly valuable alternative to synthesizing these polymers as they are able to be produced in environmentally benign conditions and have played a pivotal role in various biosynthetic strategies in recent years. Serving as model systems, lysozymes have been shown to polymerize 2-ethynylpyridine (2-EP) via orthogonal catalysis to produce a conjugated polymer with pyridine pendant groups. Initial studies utilized hen egg-white lysozyme (HEWL), however, the deduction of its mechanism was limited since tools for modifying the protein for detailed studies of structure activity relationships were intractable. In this work, bacteriophage T4 lysozyme (T4L) has been adapted to polymerize 2-EP and has been investigated using various biophysical methods to probe the convergence between glycosidic hydrolase classes in their ability to produce this conjugated polymer. Though the polymerization mechanism remains elusive, this initial work suggests these systems may be adaptable for ‘green’ approaches in emerging materials technology and biomedical facets.

Included in

Chemistry Commons

Share

COinS