Presenters

Academic department under which the project should be listed

CSM - Physics

Faculty Sponsor Name

Chetan Dhital

Not applicable

Abstract (300 words maximum)

Polar magnetic oxides are interesting systems to study due to the possibility of hosting functional properties such as ferroelectricity, piezoelectricity, etc. In this work, a new compound HoFeWO6 is synthesized using high-temperature solid-state reaction and characterized using x-ray diffraction, neutron diffraction, magnetization measurements, and dielectric measurements. The x-ray and neutron diffraction results indicate that HoFeWO6 crystallizes in polar (non-centrosymmetric and achiral) orthorhombic structure P n a 21. The magnetization measurements indicate that HoFeWO6 exhibit paramagnetic to antiferromagnetic transition at TN = 18 K. The dielectric properties at room temperature indicate that the dielectric constant decreases with an increase in frequency indicating the low-frequency dielectric behavior are dominated by the external effects such as interface polarization.

Project Type

Oral Presentation (15-min time slots)

Share

COinS
 

Physical properties of polar magnetic oxides HoFeWO6

Polar magnetic oxides are interesting systems to study due to the possibility of hosting functional properties such as ferroelectricity, piezoelectricity, etc. In this work, a new compound HoFeWO6 is synthesized using high-temperature solid-state reaction and characterized using x-ray diffraction, neutron diffraction, magnetization measurements, and dielectric measurements. The x-ray and neutron diffraction results indicate that HoFeWO6 crystallizes in polar (non-centrosymmetric and achiral) orthorhombic structure P n a 21. The magnetization measurements indicate that HoFeWO6 exhibit paramagnetic to antiferromagnetic transition at TN = 18 K. The dielectric properties at room temperature indicate that the dielectric constant decreases with an increase in frequency indicating the low-frequency dielectric behavior are dominated by the external effects such as interface polarization.