Date of Award

Spring 4-29-2019

Degree Type

Thesis

Degree Name

Master of Science in Software Engineering

Department

Software Engineering and Game Design and Development

Committee Chair/First Advisor

Dr. Reza M. Parizi

Abstract

In the last decade, blockchain has emerged as one of the most influential innovations in software architecture and technology. Ideally, blockchains are designed to be architecturally and politically decentralized, similar to the Internet. But recently, public and permissionless blockchains such as Bitcoin and Ethereum have faced stumbling blocks in the form of scalability. Both Bitcoin and Ethereum process fewer than 20 transactions per second, which is significantly lower than their centralized counterpart such as VISA that can process approximately 1,700 transactions per second. In realizing this hindrance in the wide range adoption of blockchains for building advanced and large scalable systems, the blockchain community has proposed first- and second-layer scaling solutions including Segregated Witness (Segwit), Sharding, and two-way pegged sidechains. Although these proposals are innovative, they still suffer from the blockchain trilemma of scalability, security, and decentralization. Moreover, at this time, little is known or discussed regarding factors related to design choices, feasibility, limitations and other issues in adopting the various first- and second-layer scaling solutions in public and permissionless blockchains. Hence, this thesis provides the first comprehensive review of the state-of-the-art first- and second-layer scaling solutions for public and permissionless blockchains, identifying current advancements and analyzing their impact from various viewpoints, highlighting their limitations and discussing possible remedies for the overall improvement of the blockchain domain.

Share

COinS