Department

Chemistry and Biochemistry

Document Type

Article

Publication Date

9-13-2023

Embargo Period

10-9-2024

Abstract

Boron–nitrogen-containing heterocycles with extended conjugated π-systems such as polycyclic aromatic 1,2-azaborines, hold the fascination of organic chemists due to their unique optoelectronic properties. However, the majority of polycyclic aromatic 1,2-azaborines aggregate at high concentrations or in the solid-state, resulting in aggregation-caused quenching (ACQ) of emission. This practical limitation poses significant challenges for polycyclic aromatic 1,2-azaborines’ use in many applications. Additionally, only a few solvatochromic polycyclic aromatic 1,2-azaborines have been reported and they all display minimal solvatochromism. Therefore, the scope of available polycyclic 1,2-azaborines needs to be expanded to include those displaying fluorescence at high concentration and in the solid-state as well as those that exhibit significant changes in emission intensity in various solvents due to different polarities. To address the ACQ issue, we evaluate the effect of a pre-twisted molecular geometry on the optoelectronic properties of polycyclic aromatic 1,2-azaborines. Specifically, three phenyl-substituted pyrrolidinone-fused 1,2-azaborines (PFAs) with similar structures and functionalized with diverse electronic moieties (–H, –NO2, –CN, referred to as PFA 1, 2, and 3, respectively) were experimentally and computationally studied. Interestingly, PFA 2 displays two distinct emission properties: (1) solvatochromism, in which its emission and quantum yields are tunable with respect to solvent polarity, and (2) fluorescence that can be completely “turned off” and “turned on” via aggregation-induced emission (AIE). This report provides the first example of a polycyclic aromatic 1,2-azaborine that displays both AIE and solvatochromism properties in a single BN-substituted backbone. According to time-dependent density functional theory (TD-DFT) calculations, the fluorescence properties of PFA 2 can be explained by the presence of a low-lying n–π* charge transfer state inaccessible to PFA 1 or PFA 3. These findings will help in the design of future polycyclic aromatic 1,2-azaborines that are solvatochromic and AIE-active as well as in understanding how molecular geometry affects these compounds’ optoelectronic properties.

Journal Title

Journal of Materials Chemistry C

Journal ISSN

2050-7534

Volume

2023

Issue

40

Digital Object Identifier (DOI)

10.1039/D3TC03278G

Share

COinS