Synergistic composites energy harvester beams based on hybrid ZnO/PZT piezoelectric nanomaterials
Department
Mechanical Engineering
Document Type
Article
Publication Date
2-1-2023
Abstract
This study aims at elucidating the synergistic effect of the hybridization of two piezoelectric materials: zinc oxide nanowires (ZnO NWs) and a thin film of lead zirconium titanate (PZT), on the mechanical and energy harvesting performance of carbon fiber reinforced polymer composites beams. Novel synthesis techniques were utilized to develop energy-harvesting composite beams with surface-grown ZnO NWs and sputtered PZT thin films. While not an extraordinarily strong piezoelectric material, ZnO NWs enhanced the strength and damping parameter of the composite due to the increased surface area and mechanical interlocking. The composite comprising two piezoelectric materials showed a substantial gain in stiffness, a 25.8% increase compared to plain composite without piezoelectric materials. The hybrid composite energy harvester based on PZT/ZnO NWs exhibited a significant electric power gain of 733.94% more than that for beams with ZnO NWs compared to 44% improvement for a beam utilizing only PZT. Using PZT thin films with ZnO NWs on carbon fiber could yield a high-performance hybrid composite with excellent mechanical properties and energy harvesting capabilities.
Journal Title
Smart Materials and Structures
Journal ISSN
09641726
Volume
32
Issue
2
Digital Object Identifier (DOI)
10.1088/1361-665X/acadbc