Structural and functional effects of the L84S mutant in the SARS-COV-2 ORF8 dimer based on microsecond molecular dynamics study

Department

Chemistry and Biochemistry

Document Type

Article

Publication Date

1-1-2023

Abstract

The L84S mutation has been observed frequently in the ORF8 protein of SARS-CoV-2, which is an accessory protein involved in various important functions such as virus propagation, pathogenesis, and evading the immune response. However, the specific effects of this mutation on the dimeric structure of ORF8 and its impacts on interactions with host components and immune responses are not well understood. In this study, we performed one microsecond molecular dynamics (MD) simulation and analyzed the dimeric behavior of the L84S and L84A mutants in comparison to the native protein. The MD simulations revealed that both mutations caused changes in the conformation of the ORF8 dimer, influenced protein folding mechanisms, and affected the overall structural stability. In particular, the 73YIDI76 motif has found to be significantly affected by the L84S mutation, leading to structural flexibility in the region connecting the C-terminal β4 and β5 strands. This flexibility might be responsible for virus immune modulation. The free energy landscape (FEL) and principle component analysis (PCA) have also supported our investigation. Overall, the L84S and L84A mutations affect the ORF8 dimeric interfaces by reducing the frequency of protein–protein interacting residues (Arg52, Lys53, Arg98, Ile104, Arg115, Val117, Asp119, Phe120, and Ile121) in the ORF8 dimer. Our findings provide detail insights for further research in designing structure-based therapeutics against the SARS-CoV-2. Communicated by Ramaswamy H. Sarma.

Journal Title

Journal of Biomolecular Structure and Dynamics

Journal ISSN

07391102

Digital Object Identifier (DOI)

10.1080/07391102.2023.2228919

Share

COinS