Antifungal Potential of Azotobacter salinestris Strain Azt 31 against Phytopathogenic Fusarium spp. Associated with Cereals

Department

Molecular and Cellular Biology

Document Type

Article

Publication Date

4-30-2022

Abstract

Antifungal efficacy of Azotobacter salinestris against trichothecene‐producing Fusarium spp. was investigated in maize, sorghum, and wheat. The three cereals were subjected to four treatments as control (T1), Fusarium alone (T2), combination of Fusarium and A. salinestris treatment (T3), and only A. salinestris (T4). All the treatments were evaluated for total mass of seedlings, root and shoot length, seed germination, and vigor index (VI), and extent of rhizoplane colonization by A. salinestris was investigated. Further, greenhouse studies were conducted to learn the efficacy of A. salinestris in vivo conditions. Antifungal efficacy was tested by the dual‐culture method which resulted in significant reduction in Fusarium growth. Infection by Fusarium was reduced up to 50% in treated cereals such as maize, sorghum, and wheat, and there was also significant increase in seedling mass in the three hosts. Maize showed the highest VI (1859.715), followed by sorghum (1470.84), and wheat (2804.123) with A. salinestris treatment. In addition, seed germination was enhanced to 76% in maize, 69% in sorghum, and 68% in wheat, respectively. Efficacy of rhizoplane colonization showed successful isolation of A. salinestris with high CFU rate, and furthermore, significant colonization inhibition by Fusarium spp. was observed. In the greenhouse conditions, on the 45th day of the experimental set‐up, the highest shoot length/root length recorded in maize was 155.70/70.0 cm, in sorghum 165.90/48.0 cm, and in wheat 77.85/56.0 cm, and the maximum root mass recorded was 17.53 g in maize, 4.52 g in sorghum, and 1.90 g in wheat. Our present study showed that seed treatment by A. salinestris, may be used as an alternate biocontrol method against Fusarium infection in maize, sorghum, and wheat.

Journal Title

Journal of Fungi

Journal ISSN

2309-608X

Volume

8

Issue

5

Digital Object Identifier (DOI)

10.3390/jof8050473

Share

COinS