Trajectory control of planar closed chain fully compliant mechanism

Department

Mechanical Engineering

Document Type

Article

Publication Date

4-1-2021

Abstract

This study presents the design, analysis, dynamical modeling and control of a planar, flexure based closed chain compliant mechanism. Mechanism is designed as a single piece and comprised of rigid-flexure links connected in series. Base links of the mechanism can be actuated through two servo motors and translated along the horizontal direction using two step motors. Two servo motors are mounted on a rail-cart system and carts are equipped with belt drive to enable horizontal displacement. Dynamical model of the mechanism is derived by adapting pseudo rigid body modeling method, vector closure loop equations, Euler’s laws of motion and geometric constraints. Mechanism is 3D printed using thermoplastic polyurethane filament (TPU), motion of the mechanism is video recorded and position of the tip along with the motion of center of each links are captured using image processing. Mathematical model is simulated in Matlab Simulink and validated with the experimental data. A reference trajectory drawn within the workspace of the mechanism on iPad is successfully traced in real time using the simplified model, mirror imaging program and inverse kinematics. The proposed mechanism can be utilized as a haptic device and a compliant manipulator in industrial applications where high precision and larger workspace is desired.

Journal Title

Journal of Mechanical Science and Technology

Journal ISSN

1738494X

Volume

35

Issue

4

First Page

1711

Last Page

1719

Digital Object Identifier (DOI)

10.1007/s12206-021-0334-5

Share

COinS