Zonotopes whose cellular strings are all coherent

Department

Mathematics

Document Type

Article

Publication Date

8-1-2021

Abstract

A cellular string of a polytope is a sequence of faces stacked on top of each other in a given direction. The poset of cellular strings, ordered by refinement, is known to be homotopy equivalent to a sphere. The subposet of coherent cellular strings is the face lattice of the fiber polytope, hence is homeomorphic to a sphere. In some special cases, every cellular string is coherent. Such polytopes are said to be all-coherent. We give a complete classification of zonotopes with the all-coherence property in terms of their oriented matroid structure. Although the face lattice of the fiber polytope in this case is not an oriented matroid invariant, we prove that the all-coherence property is invariant.

Journal Title

European Journal of Combinatorics

Journal ISSN

01956698

Volume

96

Digital Object Identifier (DOI)

10.1016/j.ejc.2021.103352

Share

COinS