Micropterons, nanopterons and solitary wave solutions to the diatomic Fermi–Pasta–Ulam–Tsingou problem

Department

Mathematics

Document Type

Article

Publication Date

12-1-2021

Abstract

We use a specialized boundary-value problem solver for mixed-type functional differential equations to numerically examine the landscape of traveling wave solutions to the diatomic Fermi–Pasta–Ulam–Tsingou (FPUT) problem. By using a continuation approach, we are able to uncover the relationship between the branches of micropterons and nanopterons that have been rigorously constructed recently in various limiting regimes. We show that the associated surfaces are connected together in a nontrivial fashion and illustrate the key role that solitary waves play in the branch points. Finally, we numerically show that the diatomic solitary waves are stable under the full dynamics of the FPUT system.

Journal Title

Partial Differential Equations in Applied Mathematics

Volume

4

Digital Object Identifier (DOI)

10.1016/j.padiff.2021.100128

Share

COinS