Conditions for a bigraph to be super-cyclic

Department

Mathematics

Document Type

Article

Publication Date

1-1-2021

Abstract

A hypergraph H is super-pancyclic if for each A ⊆ V (H) with |A| ≽ 3, H contains a Berge cycle with base vertex set A. We present two natural necessary conditions for a hypergraph to be super-pancyclic, and show that in several classes of hypergraphs these necessary conditions are also sufficient. In particular, they are sufficient for every hypergraph H with δ(H) ≽ max{|V (H)|,|E(H)|+10 4 }. We also consider super-cyclic bipartite graphs: (X, Y )-bigraphs G such that for each A ⊆ X with |A| ≽ 3, G has a cycle CA such that V (CA) ∩ X = A. Super-cyclic graphs are incidence graphs of super-pancyclic hypergraphs, and our proofs use the language of such graphs.

Journal Title

Electronic Journal of Combinatorics

Volume

28

Issue

1

First Page

1

Last Page

19

Digital Object Identifier (DOI)

10.37236/9683

Share

COinS