Machine learning research towards combating COVID-19: Virus detection, spread prevention, and medical assistance
Department
Information Technology
Document Type
Article
Publication Date
5-1-2021
Abstract
COVID-19 was first discovered in December 2019 and has continued to rapidly spread across countries worldwide infecting thousands and millions of people. The virus is deadly, and people who are suffering from prior illnesses or are older than the age of 60 are at a higher risk of mortality. Medicine and Healthcare industries have surged towards finding a cure, and different policies have been amended to mitigate the spread of the virus. While Machine Learning (ML) methods have been widely used in other domains, there is now a high demand for ML-aided diagnosis systems for screening, tracking, predicting the spread of COVID-19 and finding a cure against it. In this paper, we present a journey of what role ML has played so far in combating the virus, mainly looking at it from a screening, forecasting, and vaccine perspective. We present a comprehensive survey of the ML algorithms and models that can be used on this expedition and aid with battling the virus.
Journal Title
Journal of biomedical informatics
Volume
117
First Page
103751
Digital Object Identifier (DOI)
10.1016/j.jbi.2021.103751