Zero-Inflated gaussian mixed models for analyzing longitudinal microbiome data
Department
Analytics and Data Science Institute
Document Type
Article
Publication Date
11-1-2020
Abstract
© 2020 This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Motivation The human microbiome is variable and dynamic in nature. Longitudinal studies could explain the mechanisms in maintaining the microbiome in health or causing dysbiosis in disease. However, it remains challenging to properly analyze the longitudinal microbiome data from either 16S rRNA or metagenome shotgun sequencing studies, output as proportions or counts. Most microbiome data are sparse, requiring statistical models to handle zero-inflation. Moreover, longitudinal design induces correlation among the samples and thus further complicates the analysis and interpretation of the microbiome data. Results In this article, we propose zero-inflated Gaussian mixed models (ZIGMMs) to analyze longitudinal microbiome data. ZIGMMs is a robust and flexible method which can be applicable for longitudinal microbiome proportion data or count data generated with either 16S rRNA or shotgun sequencing technologies. It can include various types of fixed effects and random effects and account for various within-subject correlation structures, and can effectively handle zeroinflation. We developed an efficient Expectation-Maximization (EM) algorithm to fit the ZIGMMs by taking advantage of the standard procedure for fitting linear mixed models. We demonstrate the computational efficiency of our EM algorithm by comparing with two other zero-inflated methods. We show that ZIGMMs outperform the previously used linear mixed models (LMMs), negative binomial mixed models (NBMMs) and zero-inflated Beta regression mixed model (ZIBR) in detecting associated effects in longitudinal microbiome data through extensive simulations. We also apply our method to two public longitudinal microbiome datasets and compare with LMMs and NBMMs in detecting dynamic effects of associated taxa.
Journal Title
PLoS ONE
Volume
15
Issue
11 November
Digital Object Identifier (DOI)
10.1371/journal.pone.0242073