Automatic labelling of brain tissues in MR images through spatial indexes based hybrid atlas forest
Department
Computer Science
Document Type
Article
Publication Date
10-16-2020
Abstract
© 2020 Institution of Engineering and Technology. All rights reserved. The multi-atlas-based methods are widely applied in the automatic labelling in magnetic resonance (MR) images. However, most multi-atlas-based methods require that all atlases be registered to the target image accurately to have a correct label propagation. In this study, the authors introduce the term spatial indexes and construct a hybrid atlas forest model to gather the labelling information from all atlases without propagating labels from every single atlas. Furthermore, a new automatic labelling method using the hybrid atlas forest model based on spatial indexes is proposed. In the proposed framework, an atlas is chosen arbitrarily as a reference image and the spatial indexes are constructed on this image space. Then, the samples are selected from all atlases in the dataset based on the spatial indexes to construct a samples pool. Finally, the hybrid atlas forest model will be trained on the samples pool and used to predict the labelling of the target. Experiments are conducted on two public datasets to evaluate the effectiveness of the proposed method. The experimental results show that the proposed method reduces the requirement of strong dependence on precise registration and improve the accuracy of labelling.
Journal Title
IET Image Processing
Journal ISSN
17519659
Volume
14
Issue
12
First Page
2728
Last Page
2736
Digital Object Identifier (DOI)
10.1049/iet-ipr.2018.6073