Effect of hiit with tabata protocol on serum irisin, physical performance, and body composition in men
Department
Exercise Science and Sport Management
Document Type
Article
Publication Date
5-2-2020
Abstract
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. High-intensity interval training (HIIT) is frequently utilized as a method to reduce body mass. Its intensity of work results in a number of beneficial adaptive changes in a relatively short period of time. Irisin is a myokine and adipokine secreted to the blood during exercise and it takes part in the regulation of energy metabolism. It is a vital issue from the prophylaxis point of view as well as treatment through exercise of different diseases (e.g., obesity, type-2 diabetes). The aim of this study was to evaluate changes in irisin concentration, body composition, and aerobic and anaerobic performance in men after HIIT. Eight weeks of HIIT following the Tabata protocol was applied in the training group (HT) (n = 15), while a sedentary group (SED) (n = 10) did not participate in fitness activities within the same time period. Changes of irisin, body composition, and aerobic and anaerobic performance were evaluated after graded exercise test (GXT) and Wingate anaerobic test (WAnT) before and after eight weeks of training. Training resulted in an increased of blood irisin concentration (by 29.7%) p < 0.05), VO2max increase (PRE: 44.86 ± 5.74 mL·kg−1·min−1; POST: 50.16 ± 5.80 mL kg−1·min−1; p < 0.05), reduction in percent body fat (PRE: 14.44 ± 3.33%; POST: 13.61 ± 3.16%; p < 0.05), and increase of WAnT parameters (p < 0.05) in the HT group. No changes were observed in the SED group. HIIT resulted in beneficial effects in the increase in blood irisin concentration, physical performance, and reduced fat content. The HIIT may indicate an acceleration of base metabolism. This effect can be utilized in the prevention or treatment of obesity.
Journal Title
International Journal of Environmental Research and Public Health
Journal ISSN
16617827
Volume
17
Issue
10
Digital Object Identifier (DOI)
10.3390/ijerph17103589