The effect of low-mobile foot posture on multi-segment medial foot model gait kinematics

Stephen C. Cobb, University of Wisconsin-Milwaukee
Laurie L. Tis, Kennesaw State University
Jeffrey T. Johnson, University of West Georgia
Yong “Tai” Wang, Georgia State University
Mark D. Geile, Georgia State University
Frances A. McCarty, Georgia State University

Abstract

A number of in vitro, invasive in vivo, and non-invasive marker based multi-segment foot models (MSFMs) have reported significant motion in the articulations distal to the calcaneus during gait. Few studies, however, have applied a MSFM to the investigation of the effect of foot posture on gait kinematics. Differences in stance phase kinematics between participants with low-mobile (LMF) (n = 11) versus “typical” (TYPF) (n = 11) foot postures were investigated using a multi-segment medial foot model. Three-dimensional position and stance phase excursions of four functional articulations (rearfoot complex [RC], calcaneonavicular complex [CNC], medial forefoot, first metatarsophalangeal complex) were quantified using an eight optical camera motion analysis system (Vicon Motus, Vicon Motions Systems, Centennial, CO) and a custom written software program (Matlab 7.0.1, The MathWorks, Natick, MA), respectively. Excursions during four subphases of stance phase (loading response, midstance, terminal stance, pre-swing) at each of the functional articulations were compared using multivariate analyses of variance (α ≤ 0.05). Results revealed significantly decreased LMF group CNC abduction excursion (p = 0.047) during midstance. During pre-swing, LMF group RC inversion excursion was significantly increased (p = 0.032) and eversion excursion was significantly decreased (p = 0.003) compared to the TYPF group. When these differences are considered in conjunction with the kinematic patterns of other foot/leg segments and functional articulations, the changes may suggest dysfunction of normal leg-calcaneus coupling and the constrained tarsal mechanism associated with low-mobile foot postures.