Department
Mathematics
Document Type
Article
Publication Date
2007
Abstract
The authors consider the higher order boundary-value problem u (n)(t) = q(t)f(u(t)), 0 ≤ t ≤ 1, u(i-1)(0) = u (n-2)(p) = u(n-1)(1) = 0, 1 ≤ i ≤ n -2, where n ≥ 4 is an integer, and p ∈ (1/2, 1) is a constant. Sufficient conditions for the existence and nonexistence of positive solutions of this problem are obtained. The main results are illustrated with an example.
Journal Title
Electronic Journal of Differential Equations
Journal ISSN
1072-6691
Volume
45
First Page
1
Last Page
10