Department

Mechanical Engineering

Additional Department

Civil and Environmental Engineering

Document Type

Article

Publication Date

9-9-2022

Embargo Period

9-13-2022

Abstract

Long-duration spaceflight poses multiple hazards to human health, including physiological changes associated with microgravity. The hemodynamic adaptations occurring upon entry into weightlessness have been associated with retrograde stagnant flow conditions and thromboembolic events in the venous vasculature but the impact of microgravity on cerebral arterial hemodynamics and function remains poorly understood. The objective of this study was to quantify the effects of microgravity on hemodynamics and wall shear stress (WSS) characteristics in 16 carotid bifurcation geometries reconstructed from ultrasonography images using computational fluid dynamics modeling. Microgravity resulted in a significant 21% increase in flow stasis index, a 22–23% decrease in WSS magnitude and a 16–26% increase in relative residence time in all bifurcation branches, while preserving WSS unidirectionality. In two anatomies, however, microgravity not only promoted flow stasis but also subjected the convex region of the external carotid arterial wall to a moderate increase in WSS bidirectionality, which contrasted with the population average trend. This study suggests that long-term exposure to microgravity has the potential to subject the vasculature to atheroprone hemodynamics and this effect is modulated by subject-specific anatomical features. The exploration of the biological impact of those microgravity-induced WSS aberrations is needed to better define the risk posed by long spaceflights on cardiovascular health.

Journal Title

npj Microgravity

Journal ISSN

2373-8065

Volume

8

Issue

39

Digital Object Identifier (DOI)

https://doi.org/10.1038/s41526-022-00223-6

COinS