EEG asymmetry and cognitive testing in MCI identification

Tim Martin, Kennesaw State University
Bruno Giordani, University of Michigan School of Nursing
Voyko Kavcic, Wayne State University


Background: Finding the baseline resting-state EEG markers for early identification of cognitive decline can contribute to the identification of individuals at risk of further change. Potential applications include identifying participants for clinical trials, early treatment, and evaluation of treatment, accessible even from a community setting. Methods: Analyses were completed on a sample of 99 (ages 60–90) consensus-diagnosed, community-dwelling African Americans (58 cognitively typical/HC, and 41 mildly cognitively impaired/MCI), who were recruited from the Michigan Alzheimer's Disease Research Center (MADRC) and the Wayne State University Institute of Gerontology. In addition to neuropsychological testing with CogState and Toolbox computerized batteries, resting-state EEGs (rsEEG, eyes closed) were acquired before and after participants were engaged in a visual motion direction discrimination task. rsEEG frontal alpha asymmetry (FAA) and frontal beta asymmetry (FBA) were calculated. Results: FAA showed no difference across groups for the pre-task resting state. FBA was significantly different between groups, with more asymmetric frontal beta in MCI. Both physiological indices, however, along with computerized neuropsychological tests were significant predictors in logistic regression classification of MCI vs. control participants. Conclusion: rsEEG asymmetries can contribute significantly to successful discrimination of older persons with MCI from those without, over and above cognitive testing, alone.