A pilot feasibility study to assess vascularity and perfusion of parathyroid glands using a portable hand-held imager

Eugene Oh, Johns Hopkins University
Hun Chan Lee, Boston University
Yoseph Kim, Johns Hopkins University
Seung Yup Lee, Kennesaw State University


Objectives: Intraoperative localization and preservation of parathyroid glands (PGs) are challenging during thyroid surgery. A new noninvasive technique of combined near-infrared PG autofluorescence detection and dye-free imaging angiography that allows intraoperative feedback has recently been introduced. The objective of this study was to evaluate this technique in real-time. Materials and Methods: A pilot feasibility study of a portable imaging device in four patients who underwent either thyroid lobectomy or total thyroidectomy is presented. PG autofluorescence and vascularity/tissue perfusion were monitored using a real-time screen display during the surgical procedure. Results: Three lobectomies and one total thyroidectomy were performed. Among the nine PGs identified by the operating surgeon, eight PGs were confirmed using the autofluorescence device. Each PG was successfully determined to be either well-perfused or devascularized, and devascularized PGs were autotransplanted. Conclusions: The preliminary results suggest that the combination of PG autofluorescence detection and dye-free angiography can potentially be used to assess PG function. With further validation studies, the effectiveness of this technique in clinical practice can be further delineated.