Analysis of FBMC waveform for 5g network based smart hospitals


Electrical and Computer Engineering

Document Type


Publication Date



Nowadays, many prevalent frameworks for medical care have been projected, studied, and implemented. The load and challenges of traditional hospitals are increasing daily, leading to inefficient service in the health system. Smart hospitals based on advanced techniques play a crucial part in advancing the health services of rural people. It spares the time and money involved in travel, and patient medical reports can be shared instantly with the experts regardless of geographical constraints. Currently, the role of technology in hospitals is limited due to various restrictions, such as the obtainability of a high spectrum, low latency, and high-speed network. In this paper, we focused on the implementation of an advanced waveform with high spectral performance. Filer Bank Multi-Carrier (FBMC) is considered a strong contender for the upcoming 5G-centered smart hospitals due to its high data rate, no leakage of the spectrum, and less sensitivity to frequency error. In addition, a comparison of the spectral utilization of orthogonal frequency division multiplexing (OFDM) and FBMC in terms of bit error rate (BER), peak power (PP), power spectral density (PSD), noise-PSD, capacity and magnitude, and phase response is illustrated. Numerical results show that the FBMC achieved a throughput gain of 1 dB and its spectral performance is better than the OFDM; hence, it is a better choice for the proposed application compared to the current standard OFDM.

Journal Title

Applied Sciences (Switzerland)





Digital Object Identifier (DOI)