Low-Defect, High Molecular Weight Indacenodithiophene (IDT) Polymers Via a C-H Activation: Evaluation of a Simpler and Greener Approach to Organic Electronic Materials

Department

Chemistry and Biochemistry

Document Type

Article

Publication Date

10-4-2021

Abstract

The development, optimization, and assessment of new methods for the preparation of conjugated materials is key to the continued progress of organic electronics. Direct C-H activation methods have emerged and developed over the last 10 years to become an invaluable synthetic tool for the preparation of conjugated polymers for both redox-active and solid-state applications. Here, we evaluate direct (hetero)arylation polymerization (DHAP) methods for the synthesis of indaceno[1,2-b:5,6-b′]dithiophene-based polymers. We demonstrate, using a range of techniques, including direct visualization of individual polymer chains via high-resolution scanning tunneling microscopy, that DHAP can produce polymers with a high degree of regularity and purity that subsequently perform in organic thin-film transistors comparably to those made by other cross-coupling polymerizations that require increased synthetic complexity. Ultimately, this work results in an improved atom economy by reducing the number of synthetic steps to access high-performance molecular and polymeric materials.

Journal Title

ACS Materials Letters

Volume

3

Issue

10

First Page

1503

Last Page

1512

Digital Object Identifier (DOI)

10.1021/acsmaterialslett.1c00478

Share

COinS