Exercise Science and Sport Management

Document Type


Publication Date



BACKGROUOND: The purpose of this study was to examine resting the metabolic response to the ingestion of a complex containing Citrus Aurantium + Caffeine (CA + C) and if its consumption influences metabolic recovery following a high-intensity anaerobic exercise bout in habitual caffeine users. METHODS: Ten physically active males (25.1 ± 3.9 years; weight 78.71 ± 9.53 kg; height 177.2 ± 4.6 cm; body fat 15.5 ± 3.13%) participated in this study. This study was performed in a double-blind, randomized crossover fashion consisting of two exhaustive exercise protocols. On each visit the participants consumed either a CA + C (100 mg of CA and 100 mg of C) or placebo (dextrose) capsule. After consumption, participants were monitored throughout a 45-min ingestion period, then completed a repeated Wingate protocol, and were then monitored throughout a 45-min recovery period. Metabolic function was measured through blood glucose, plasma insulin, plasma triglycerides, and plasma catecholamines: epinephrine (E) and norepinephrine (NE). Biomarkers were taken at four different time points; Ingestion period: baseline (I1), post-ingestion period (I2); Recovery period: immediately post-exercise (R1), post-recovery period (R2). RESULTS: A repeated measures ANOVA revealed significant time-dependent increases in plasma E and NE at I2 only in the CA + C trial (p < 0.05), and a significant decrease in blood glucose at I2 in the PLA trial (p < 0.05); however, no meaningful changes in glucose was observed following CA + C ingestion. No changes in insulin or triglycerides were observed during the ingestion period. No trial-dependent differences were observed in the Recovery period. All biomarkers of metabolic recovery were equivalent when evaluating R1 v R2. Participants recovered in a similar time-dependent manner in all markers of metabolism following the PLA and CA + C trials. CONCLUSION: The findings of this study suggested that normal recommended dosages of 100 mg CA + 100 mg C is sufficient to promote glucose sparing at rest, with modest increases in SNS activity; however, the individual role of CA or C in this response cannot be determined.

Journal Title

Journal of the International Society of Sports Nutrition

Journal ISSN






Digital Object Identifier (DOI)



This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.