Department

Physics

Document Type

Article

Publication Date

10-1-2018

Abstract

A correlated material in the vicinity of an insulator-metal transition (IMT) exhibits rich phenomenology and variety of interesting phases. A common avenue to induce IMTs in Mott insulators is doping, which inevitably leads to disorder. While disorder is well known to create electronic inhomogeneity, recent theoretical studies have indicated that it may play an unexpected and much more profound role in controlling the properties of Mott systems. Theory predicts that disorder might play a role in driving a Mott insulator across an IMT, with the emergent metallic state hosting a power law suppression of the density of states (with exponent close to 1; V-shaped gap) centered at the Fermi energy. Such V-shaped gaps have been observed in Mott systems but their origins are as yet unknown. To investigate this, we use scanning tunneling microscopy and spectroscopy to study isovalent Ru substitutions in Sr3(Ir1-xRux)2O7 (0≤x≤0.5) which drives the system into an antiferromagnetic, metallic state. Our experiments reveal that many core features of the IMT such as power law density of states, pinning of the Fermi energy with increasing disorder, and persistence of antiferromagnetism can be understood as universal features of a disordered Mott system near an IMT and suggest that V-shaped gaps may be an inevitable consequence of disorder in doped Mott insulators.

Journal

Proceedings of the National Academy of Sciencs of the United States of America

Journal ISSN

0027-8424

Volume

115

Issue

44

First Page

11198

Last Page

11202

Digital Object Identifier (DOI)

10.1073/pnas.1808056115

Included in

Physics Commons

Share

COinS