Department

Economics, Finance and Quantitative Analysis

Document Type

Article

Publication Date

2018

Embargo Period

7-18-2018

Abstract

In this paper, we consider physician scheduling problems originating from a medical staff scheduling service provider based in the United States. Creating a physician schedule is a complex task. An optimal schedule must balance a number of goals including adequately staffing required assignments for quality patient care, adhering to a unique set of rules that depend on hospital and medical specialties, and maintaining a work-life balance for physicians. We study various types of physician and hospital requirements with different priorities, including equalization constraints to ensure that each provider will receive approximately the same number of a specified shift over a given time period. A major challenge involves ensuring an equal distribution of workload among physicians, with the end goal of producing a schedule that will be perceived by physicians as fair while still meeting all other requirements for the group. As the number of such equalization constraints increases, the physician scheduling optimization problem becomes more complex and it requires more time to find an optimal schedule. We begin by constructing mathematical models to formulate the problem requirements, and then demonstrate the benefits of a polyhedral study on a relaxation of the physician scheduling problem that includes equalization constraints. A branch-and-cut algorithm using valid inequalities derived from the relaxation problem shows that the quality of the schedules with respect to the soft constraints is notably better. An example problem from a hospitalist department is discussed in detail, and improvements for other schedules representing different specialties are also presented.

Journal

Omega: The International Journal of Management Science

Journal ISSN

0030-2228

Digital Object Identifier (DOI)

10.1016/j.omega.2018.06.011

Comments

Preprint.

Included in

Business Commons

Share

COinS