Date of Submission


Degree Type


Degree Name

Master of Science in Computer Science (MSCS)


Computer Science


Big Data

Faculty Advisor

Mingon Kang


Mingon Kang

Committee Member

Chih-Cheng Hung

Committee Member

Junggab Son


Automatic extraction of relevant knowledge to domain-specific questions from Optical Character Recognition (OCR) documents is critical for developing intelligent systems, such as document search engines, sentiment analysis, and information retrieval, since hands-on knowledge extraction by a domain expert with a large volume of documents is intensive, unscalable, and time-consuming. There have been a number of studies that have automatically extracted relevant knowledge from OCR documents, such as ABBY and Sandford Natural Language Processing (NLP). Despite the progress, there are still limitations yet-to-be solved. For instance, NLP often fails to analyze a large document. In this thesis, we propose a knowledge extraction framework, which takes domain-specific questions as input and provides the most relevant sentence/paragraph to the given questions in the document. Overall, our proposed framework has two phases. First, an OCR document is reconstructed into a semi-structured document (a document with hierarchical structure of (sub)sections and paragraphs). Then, relevant sentence/paragraph for a given question is identified from the reconstructed semi structured document. Specifically, we proposed (1) a method that converts an OCR document into a semi structured document using text attributes such as font size, font height, and boldface (in Chapter 2), (2) an image-based machine learning method that extracts Table of Contents (TOC) to provide an overall structure of the document (in Chapter 3), (3) a document texture-based deep learning method (DoT-Net) that classifies types of blocks such as text, image, and table (in Chapter 4), and (4) a Question & Answer (Q&A) system that retrieves most relevant sentence/paragraph for a domain-specific question. A large number of document intelligent systems can benefit from our proposed automatic knowledge extraction system to construct a Q&A system for OCR documents. Our Q&A system has applied to extract domain specific information from business contracts at GE Power.