First Observation of the Hadronic Transition \(\Upsilon(4S) \rightarrow \eta b(1P) \) and New Measurement of the \(hb(1P) \) and \(\eta b(1S) \) Parameters

U. Tamponi et al

Follow this and additional works at: https://digitalcommons.kennesaw.edu/facpubs

Part of the Physics Commons

Recommended Citation
Tamponi et al, U., "First Observation of the Hadronic Transition \(\Upsilon(4S) \rightarrow \eta b(1P) \) and New Measurement of the \(hb(1P) \) and \(\eta b(1S) \) Parameters" (2015). Faculty Publications. 3959.
https://digitalcommons.kennesaw.edu/facpubs/3959
First Observation of the Hadronic Transition $\Upsilon(4S) \to \eta_b(1P)$ and New Measurement of the $h_b(1P)$ and $\eta_b(1S)$ Parameters

(Belle Collaboration)

1University of the Basque Country UPV/EHU, 48080 Bilbao
2Beihang University, Beijing 100191
3University of Bonn, 53115 Bonn
4Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk 630090
5Faculty of Mathematics and Physics, Charles University, 121 16 Prague
6University of Cincinnati, Cincinnati, Ohio 45221
7Deutsches Elektronen–Synchronron, 22607 Hamburg
8Justus-Liebig-Universität Gießen, 35392 Gießen
9SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
10Gyeongsang National University, Chinju 660-701
11Hanyang University, Seoul 139-791
12University of Hawaii, Honolulu, Hawaii 96822
13High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
14Kerasque, Basque Foundation for Science, 48013 Bilbao
15Indian Institute of Technology Guwahati, Assam 781039
16Indian Institute of Technology Madras, Chennai 600036
17Indiana University, Bloomington, Indiana 47408
18Institute of High Energy Physics, Vienna 1050
19Institute for High Energy Physics, Protvino 142281
20INFN—Sezione di Torino, 10125 Torino
21Institute for Theoretical and Experimental Physics, Moscow 117218
22J. Stefan Institute, 1000 Ljubljana
23Kanagawa University, Yokohama 221-8686
24Kennesaw State University, Kennesaw, Georgia 30144
25King Abdulaziz City for Science and Technology, Riyadh 11442
26Korea Institute of Science and Technology Information, Daejeon 305-806
27Korea University, Seoul 136-713
28Kyungpook National University, Daegu 702-701
29École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015
30Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana

PRL 115, 142001 (2015) PHYSICAL REVIEW LETTERS week ending 2 OCTOBER 2015

0031-9007/15/1115(14)/142001(7) 142001-1 © 2015 American Physical Society
states, the have opened new pathways to the elusive spin-singlet theoretical descriptions, showing a large violation of Υ threshold, $\Pi_{\text{PRL}115,142001}$, transitions from the $[1,2]$. The recent observations of unexpected hadronic transitions between the lowest mass quarko-

The bottomonium system, comprising bound states of b and \bar{b} quarks, has been studied extensively in the past $[1,2]$. The recent observations of unexpected hadronic transitions from the $J^{PC} = 1^{--}$ states above the $B\bar{B}$ meson threshold, $\Upsilon(4S)$ and $\Upsilon(5S)$, to lower mass bottomonia have opened new pathways to the elusive spin-singlet states, the $h_b(nP)$ and $\eta_b(nS)$ $[3,4]$, and challenged theoretical descriptions, showing a large violation of the selection rules that apply to transitions below the threshold.

Hadronic transitions between the lowest mass quarkonium levels can be described using the QCD multipole expansion $[5-10]$. In this approach, the heavy quarks emit two gluons that subsequently transform into light hadrons. The $\pi\pi$ and η transitions between the vector states proceed via emission of $E1E1$ and $E1M2$ gluons, respectively.
Therefore, η transitions are highly suppressed as they require a spin flip of the heavy quark [11,12]. Indeed, the ratio of branching fractions

\[R^\eta_{Ss}(n,m) = \frac{\mathcal{B}[\bar{\eta}Y(nS) \to \eta Y(mS)]}{\mathcal{B}[\bar{\eta}Y(nS) \to \pi^+\pi^- Y(mS)]}, \]

is measured to be small for low-lying states: \(R^\eta_{Ss}(2.1) = (1.64 \pm 0.23) \times 10^{-3} \) [13–15] and \(R^\eta_{Ss}(3.1) < 2.3 \times 10^{-3} \) [14].

Above the \(\bar{B}B \) threshold, BABAR observed the transition \(\Upsilon(4S) \to \eta \Upsilon(1S) \) with the unexpectedly large branching fraction of \((1.96 \pm 0.28) \times 10^{-4}\), corresponding to \(R^\eta_{Ss}(4,1) = 2.41 \pm 0.42 \) [16]. This apparent violation of the heavy quark spin-symmetry was explained by the contribution of \(B \) meson loops or, equivalently, by the presence of a four-quark \(\bar{B}B \) component inside the \(\Upsilon(4S) \) wave function [17,18]. At the \(\Upsilon(5S) \) energy, the anomaly is even more striking. The spin-flip processes \(\Upsilon(5S) \to \pi\pi h_b(1P, 2P) \) are found not to be suppressed with respect to the spin-symmetry-preserving reactions \(\Upsilon(5S) \to \pi\pi Y(1S, 2S) \) [3], and all the \(\pi\pi \) transitions show the presence of new resonant structures [19,20] that cannot be explained as conventional bottomonium states.

Further insight into the mechanism of the hadronic transitions above the threshold can be gained by searching for the \(E1M1 \) transition \(\Upsilon(4S) \to \eta h_b(1P) \), which is predicted to have a branching fraction of the order of \(10^{-3} \) [21].

In this Letter, we report the first observation of the \(\Upsilon(4S) \to \eta h_b(1P) \) transition and the measurement of the \(h_b(1P) \) and \(\eta h_b(1S) \) resonance parameters. Following the approach used for the observation of the \(h_b(1P, 2P) \) production in \(e^+e^- \) collisions at the \(\Upsilon(5S) \) energy [3]—by studying the inclusive \(\pi^+\pi^- \) missing mass in hadronic events—we investigate the missing mass spectrum of \(\eta \) mesons in the \(\Upsilon(4S) \) data sample. The missing mass is defined as \(M_{\text{miss}}(\eta) = \sqrt{(P_{e^+e^-} - P_\eta)^2} \), where \(P_{e^+e^-} \) and \(P_\eta \) are the four-momenta of the colliding \(e^+e^- \) pair and the \(\eta \) meson, respectively.

The large sample of reconstructed \(h_b(1P) \) events allows us to measure its mass and, via the \(h_b(1P) \to \eta h_b(1S) \) transition, the mass and width of the \(\eta h_b(1S) \). The latter are especially important since there is a 3.2σ discrepancy between the \(\eta h_b(1S) \) mass measurement by Belle using \(h_b(1P, 2P) \to \eta h_b(1S) \) transitions [4] and by BABAR and CLEO using \(\Upsilon(2S,3S) \to \eta h_b(1S) \) [22–24].

This analysis is based on the 711 fb\(^{-1} \) sample collected at the center-of-mass energy of \(\sqrt{s} = 10.580 \) GeV/c\(^2 \) by the Belle experiment [25,26] at the KEKB asymmetric-energy \(e^+e^- \) collider [27–29], corresponding to \(7.716 \times 10^8 \) \(\Upsilon(4S) \) decays. Monte Carlo (MC) samples are generated using EvtGen [30]. The detector response is simulated with GEANT3 [31]. Separate MC samples are generated for each run period to account for the changing detector performance and accelerator conditions.

Candidate events are requested to satisfy the standard Belle hadronic selection [32], to have at least three charged tracks pointing towards the primary interaction vertex, a visible energy greater than \(0.2\sqrt{s} \), a total energy deposition in the electromagnetic calorimeter (ECL) between \(0.1\sqrt{s} \) and \(0.8\sqrt{s} \), and a total momentum balanced along the \(z \) axis. Continuum \(e^+e^- \to q\bar{q} \) events (where \(q \in \{u,d,s,c\} \) are suppressed by requiring \(R_2 \), the ratio of the second to zeroth Fox-Wolfram moment [33], to be less than 0.3. The \(\eta \) candidates are reconstructed in the dominant \(\eta \to \gamma \gamma \) channel. The \(\gamma \) candidates are selected from energy deposits in the ECL that have a shape compatible with an electromagnetic shower, and are not associated with charged tracks. We investigate the absolute photon energy calibration using three calibration samples: \(\pi^0 \to \gamma\gamma, \eta \to \gamma\gamma, \) and \(D^{*0} \to D^0\gamma \) [4]. Comparing the peak position and the widths of the three calibration signals in the MC sample and in the data, as a function of the photon energy \(E \), we determine the photon energy correction \(F_{\text{en}}(E) < 0.1\% \) and the resolution correction factor \(F_{\text{res}}(E) \approx (+5 \pm 3)\% \). We recalibrate the ECL response by adding to the energy of the reconstructed clusters, \(E_{\text{rec}} \), the quantity \(\Delta E = F_{\text{en}}E_{\text{rec}} + F_{\text{res}}(E_{\text{rec}} - E_{\text{gen}}) \), where \(E_{\text{gen}} \) is the energy of the photon originating the cluster. An energy threshold, ranging from 50 to 95 MeV, is applied as a function of the polar angle to reject low energy photons arising from the beam-related backgrounds. To reject photons from \(\pi^0 \) decays, \(\gamma\gamma \) pairs having invariant mass within 17 MeV/c\(^2 \) of the nominal \(\pi^0 \) mass [34] are identified as \(\pi^0 \) candidates and the corresponding photons are excluded from the \(\eta \) reconstruction process. The angle \(\theta \) between the photon direction and that of the \(\Upsilon(4S) \) in the \(\eta \) rest frame peaks at \(\cos(\theta) \approx 1 \) for the remaining combinatorial background. Thus, we require \(\cos(\theta) < 0.94 \) for the \(\eta \) selection. All the selection criteria are optimized using the MC simulation by maximizing the figure of merit \(f = N_{\text{sig}}/\sqrt{N_{\text{sig}} + N_{\text{bkg}}} \), where \(N_{\text{sig}} \) and \(N_{\text{bkg}} \) are the signal and background yields in the signal region, respectively. The \(\eta \) peak in the \(\gamma\gamma \) invariant mass distribution, after the selection is applied, can be fit by a crystal ball (CB) [35] probability density function (PDF) with a resolution of 13 MeV/c\(^2 \). Thus, \(\gamma\gamma \) pairs with an invariant mass within 26 MeV/c\(^2 \) of the nominal \(\eta \) mass \(m_\eta \) [34] are selected as a signal sample, while the candidates in the regions \(39 \) MeV/c\(^2 \) < \(|M(\gamma\gamma) - m_\eta| < 52 \) MeV/c\(^2 \) are used as control samples. To improve the \(M_{\text{miss}}(\eta) \) resolution, a mass-constrained fit is performed on the \(\eta \) candidates in both the signal and control regions. The resulting \(M_{\text{miss}}(\eta) \) distribution is shown in the inset of Fig. 1. The \(\Upsilon(4S) \to \eta h_b(1P) \) and \(\Upsilon(4S) \to \eta \Upsilon(1S) \) peaks in \(M_{\text{miss}}(\eta) \) are modeled with CB PDFs, whose Gaussian core resolutions
are fixed according to the MC simulation. The parameters of the non-Gaussian tails, which account for the effects of the soft initial state radiation (ISR), are calculated assuming the next-to-leading order formula for the ISR emission probability [36] and by modeling the $\Upsilon(4S)$ as a Breit-Wigner resonance with $\Gamma = (20.5 \pm 2.5) \text{ MeV}/c^2$ [34]. The $M_{\text{miss}}(\eta)$ spectrum is fitted in two separate intervals: (9.30, 9.70) and (9.70, 10.00) GeV/c^2. In the first (second) interval, the combinatorial background is described with a sixth-order (11th) Chebyshev polynomial. The polynomial order is determined maximizing the confidence level of the fit and is validated using sideband samples. Figure 1 shows the background-subtracted $M_{\text{miss}}(\eta)$ distribution, with a bin size 50 times larger than that used for the fit. The confidence levels of the fits are 1% in the lower interval and 19% in the upper one. The transition $\Upsilon(4S) \to \eta h_b(1P)$ is observed with a statistical significance of 11σ, calculated using the profile likelihood method [37], and no signal is observed in the $\gamma\gamma$-mass control regions. The $h_b(1P)$ yield is $N_{h_b(1P)} = 112469 \pm 5537$. From the position of the peak, we measure $M_{h_b(1P)} = (9899.3 \pm 0.4 \pm 1.0) \text{ MeV}/c^2$ (hereinafter, the first error is statistical and the second is systematic). We calculate the branching fraction of the transition as

$$B[\Upsilon(4S) \to \eta h_b(1P)] = \frac{N_{h_b(1P)}}{N_{\Upsilon(4S)} \epsilon_{h_b(1P)} B[\eta \to \gamma\gamma]} ,$$

where $N_{\Upsilon(4S)} = (771.6 \pm 10.6) \times 10^6$ is the number of $\Upsilon(4S)$, $\epsilon_{h_b(1P)} = (16.96 \pm 1.12\%)$ is the reconstruction efficiency and $B[\eta \to \gamma\gamma] = (39.41 \pm 0.21\%)$ [34]. We obtain $B[\Upsilon(4S) \to \eta h_b(1P)] = (2.18 \pm 0.11 \pm 0.18) \times 10^{-3}$, in agreement with theoretical predictions [21]. No evidence of $\Upsilon(4S) \to \eta \Upsilon(1S)$ is present, so we set the 90% confidence level (C.L.) upper limit $B[\Upsilon(4S) \to \eta \Upsilon(1S)] < 2.7 \times 10^{-4}$, in agreement with the previous experimental result by BABAR [16]. All the upper limits presented in this Letter are obtained using the CL_s technique [38,39] and include systematic uncertainties. Using our measurement of $M_{h_b(1P)}$, we calculate the corresponding 1P hyperfine (HF) splitting, defined as the difference between the $\chi_{h_b}(1P)$ spin-averaged mass $m^{\chi_{h_b}(1P)}$ and the $h_b(1P)$ mass, and obtain $\Delta M_{\text{HF}}(1P) = (+0.6 \pm 0.4 \pm 1.0) \text{ MeV}/c^2$; the systematic error includes the uncertainty on the value of $m^{\chi_{h_b}(1P)}$ [34].

As validation of our measurement, we study the $\eta \to \pi^+\pi^-\pi^0$ mode. The π^0 candidate is reconstructed from a $\gamma\gamma$ pair with invariant mass within 17 MeV/c^2 of the nominal π^0 mass [34] while the π^\pm candidates tracks are required to be associated with the primary interaction vertex and not identified as kaons by the particle identification algorithm. We observe an excess in the signal region with statistical significance of 3.5σ and measure $B[\Upsilon(4S) \to \eta h_b(1P)]|_{\eta \to \pi^+\pi^-\pi^0} = (2.3 \pm 0.6) \times 10^{-3}$, which is in agreement with the result from the $\gamma\gamma$ mode.

Table I. Systematic uncertainties in the determination of $B[\Upsilon(4S) \to \eta h_b(1P)]$, in units of %, and on $M_{h_b(1P)}$, in units of MeV/c^2.

<table>
<thead>
<tr>
<th>Source</th>
<th>B</th>
<th>$M_{h_b(1P)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fit range and background PDF order</td>
<td>± 2.4</td>
<td>± 0.1</td>
</tr>
<tr>
<td>Bin width</td>
<td>± 2.5</td>
<td>± 0.1</td>
</tr>
<tr>
<td>ISR modeling</td>
<td>± 2.8</td>
<td>± 0.7</td>
</tr>
<tr>
<td>Peaking backgrounds</td>
<td>± 0.5</td>
<td>± 0.4</td>
</tr>
<tr>
<td>γ energy calibration</td>
<td>± 1.2</td>
<td>± 0.3</td>
</tr>
<tr>
<td>Reconstruction efficiency</td>
<td>± 6.6</td>
<td>...</td>
</tr>
<tr>
<td>$N_{\Upsilon(4S)}$</td>
<td>± 14</td>
<td>...</td>
</tr>
<tr>
<td>Beam energy</td>
<td>± 0.9</td>
<td>± 0.4</td>
</tr>
<tr>
<td>$B[\eta \to \gamma\gamma]$</td>
<td>± 0.5</td>
<td>...</td>
</tr>
<tr>
<td>Total</td>
<td>± 8.2</td>
<td>± 1.0</td>
</tr>
</tbody>
</table>
The contributions to the systematic uncertainty in our measurements are summarized in Table I. To estimate them, we first vary—simultaneously—the fit ranges within ±100 MeV/c² and the order of the background polynomial between 7 (4) and 14 (8) in the upper (lower) interval. The average variation of the fitted parameters when the fitting conditions are so changed is adopted as the fit-range or model systematic uncertainty. Similarly, we vary the bin width between 0.1 and 1 MeV/c², and we treat the corresponding average variations as the bin-width systematic error. The ISR modeling contribution is due to the Y(4S) width uncertainty [34]. The presence of peaking backgrounds is studied using MC samples of inclusive BB events and bottomonium transitions. While no peaking mesons. The uncertainty on the absolute value of accelerator reconstruction; the comparison of the fractions from several sources. Using 121.4 fb⁻¹ collected at the Y(5S) energy, the Y(5S) → π⁺π⁻Y(2S) transition is reconstructed; the comparison of the R₂ distribution obtained from this data sample with the simulation suggests a ±3% uncertainty related to the continuum rejection. A ±1% uncertainty is assigned for the efficiency of the hadronic event selection. The uncertainty on the photon reconstruction efficiency is estimated using D → K±π±π⁰ events to be ±2.8% per photon, corresponding to ±5.6% per η. The number of Y(4S) mesons is measured with a relative uncertainty of ±1.4% from the number of hadronic events after the subtraction of the continuum contribution using off-resonance data. The absolute value of accelerator beam energies are calibrated by fully reconstructed B mesons. The uncertainty on the B meson mass [34] limits the precision on M_{h_b(1P)} to ±0.4 MeV/c², while it has a negligible effect on the branching ratio measurement. Finally, we include an uncertainty in the branching fraction due to the uncertainty in B[η → γγ] [34].

The study of the η_b(1S) is performed by reconstructing the transitions Y(4S) → η_b(1P) → ηγη_b(1S). To extract the signal, we measure the number of Y(4S) → η_b(1P) events N_{h_b(1P)} as a function of the variable ΔM_{miss} = M_{miss}(ηγ) − M_{miss}(η), where M_{miss}(ηγ) is the missing mass of the ηγ system. The signal transition will produce a peak in N_{h_b(1P)} at m^{2(1S)} − m_{h_b(1P)}. The radiative photon arising from the h_b(1P) decay is reconstructed with the same criteria used in the η → γγ selection, and the h_b(1P) yield in each ΔM_{miss} bin is measured with the fitting procedure described above. To assure the convergence of the M_{miss}(η) fit in each ΔM_{miss} interval, the h_b(1P) mass is fixed to 9899.3 MeV/c², the range is reduced to [8.90, 9.95] GeV/c² and the order of the background PDF polynomial is decreased to seven. The h_b(1P) yield as a function of ΔM_{miss} is shown in Fig. 2, exhibits an excess at ΔM_{miss} = M_{η_b(1S)} − M_{h_b(1P)} with a statistical significance of 9σ. The η_b(1S) peak is described by the convolution of a double-sided CB PDF, whose parameters are fixed according to the MC simulation, and a nonrelativistic Breit-Wigner PDF that accounts for the natural η_b(1S) width. The background is described by an exponential. We measure M_{η_b(1S)} − M_{h_b(1P)} = (−498.6 ± 1.7 ± 1.2) MeV/c², Γ_{η_b(1S)} = (8 + 5 ± 5) MeV/c², and the number of Y(4S) → η_b(1P) → ηγη_b(1S) events N_{η_b(1S)} = 33116 ± 4741. The confidence level of the fit is 50%. We calculate the branching fraction of the radiative transition as

\[
B[η_b(1P) → ηγη_b(1S)] = \frac{N_{η_b(1S)}}{N_{h_b(1P)} \epsilon_{η_b(1P)}},
\]

where \(\epsilon_{η_b(1P)} / \epsilon_{ηγη_b(1S)} = 1.887 ± 0.053\) is the ratio of the reconstruction efficiencies for Y(4S) → η_b(1P) and Y(4S) → ηγη_b(1P) → ηγη_b(1S). We obtain B[η_b(1P) → ηγη_b(1S)] = (56 ± 8 ± 4)%.

To estimate the systematic uncertainties reported in Table II, we adopt the methods discussed earlier. Uncertainties related to the M_{miss}(η) fit are determined by changing the fit range, the bin width, the background-polygonal order, and the fixed values of M_{h_b(1P)} used in the fits. Similarly, the uncertainties arising from the ΔM_{miss} fit are studied by repeating it with different ranges and binning. The calibration uncertainty accounts for

![Fig. 2 (color online). ΔM_{miss} distribution. The blue solid curve shows our best fit, while the dashed red curve represents the background component.](142001-5)
the mass difference between the γM_{b}^{0} spin-spin interactions. Exploiting the radiative transition $\gamma \rightarrow M_{b}^{0}$ and, assuming our measurement of ΔM_{b}^{0} arises entirely from the single-photon reconstruction efficiency. The M_{b}^{0} mass as $M_{b}^{0} = M_{b}(1P) + \Delta M_{b}^{0} = (9400.7 \pm 1.7 \pm 1.6) \text{MeV}/c^2$. Assuming $M_{b}(1P) = (9460.30 \pm 0.26) \text{MeV}/c^2$ [34], we calculate $\Delta M_{b}^{0} = (56.7 \pm 1.6) \text{MeV}/c^2$.

A summary of the results presented in this Letter is shown in Table III. We report the first observation of a single-meson transition from spin-triplet to spin-singlet bottomonium states, $\Upsilon(4S) \rightarrow \eta b(1P)$. This process is found to be the strongest known transition from the $\Upsilon(4S)$ meson to lower bottomonium states. A new measurement of the $h_{b}(1P)$ mass is presented. The corresponding $1P$ hyperfine splitting is compatible with zero, which can be interpreted as evidence of the absence of sizable long range spin-spin interactions. Exploiting the radiative transition $h_{b}(1P) \rightarrow \eta b(1S)$, we present a new measurement of the mass difference between the $h_{b}(1P)$ and the $\eta b(1S)$ and, assuming our measurement of $M_{h_{b}}(1P)$, we calculate $M_{h_{b}}(1S)$. Our result is in agreement with the value obtained

The errors on the photon energy calibration factors. The uncertainty due to the ratio of the reconstruction efficiencies arises entirely from the single-photon reconstruction efficiency. The $\eta b(1S)$ annihilates into two gluons, while the $h_{b}(1P)$ annihilates predominantly into three gluons, but the MC simulation indicates no significant difference in the R_{2} distribution. Therefore, the continuum suppression cut does not contribute to the uncertainty arising from the reconstruction efficiency ratio. We calculate the $\eta b(1S)$ mass as $M_{\eta b}(1S) = M_{h_{b}}(1P) + \Delta M_{\eta b}(1S) = (9400.7 \pm 1.7 \pm 1.6) \text{MeV}/c^2$. Assuming $M_{\eta}(1S) = (9460.30 \pm 0.26) \text{MeV}/c^2$ [34], we calculate $\Delta M_{\eta b}(1S) = (56.7 \pm 1.6) \text{MeV}/c^2$.

A summary of the results presented in this Letter is shown in Table III. We report the first observation of a single-meson transition from spin-triplet to spin-singlet bottomonium states, $\Upsilon(4S) \rightarrow \eta b(1P)$. This process is found to be the strongest known transition from the $\Upsilon(4S)$ meson to lower bottomonium states. A new measurement of the $h_{b}(1P)$ mass is presented. The corresponding $1P$ hyperfine splitting is compatible with zero, which can be interpreted as evidence of the absence of sizable long range spin-spin interactions. Exploiting the radiative transition $h_{b}(1P) \rightarrow \eta b(1S)$, we present a new measurement of the mass difference between the $h_{b}(1P)$ and the $\eta b(1S)$ and, assuming our measurement of $M_{h_{b}}(1P)$, we calculate $M_{h_{b}}(1S)$. Our result is in agreement with the value obtained with the $\Upsilon(5S) \rightarrow \pi^+\pi^- h_{b}(1P) \rightarrow \pi^+\pi^- \eta b(1S)$ process [4] but exhibits a discrepancy with the measurements based on the M_{1} transitions $\Upsilon(2S,3S) \rightarrow \eta b(1P)$ [22–24]. From the theoretical point of view, our result is in agreement with the predictions of many potential models and lattice calculations [40], including the recent lattice result in Ref. [41]. Our measurement of $B[h_{b}(1P) \rightarrow \eta b(1S)]$ agrees with the theoretical predictions [42,43]. All the direct measurements presented in this Letter are independent of the previous results reported by Belle [3], which were obtained by reconstructing different transitions and using a different data sample. Furthermore, all the results, except for $\Delta M_{\eta b}(1S)$ and $\Delta M_{\eta b}(1P)$, are obtained using the new analysis described in this Letter and are, therefore, uncorrelated with the existing world averages.

We thank the KEKB group for excellent operation of the accelerator; the KEK cryogenics group for efficient solenoid operations; and the KEK computer group, the NII, and PNNL/EMSL for valuable computing and SINET4 network support. We acknowledge support from MEXT, JSPS, and Nagoya’s TLPRC (Japan); ARC and DIISR (Australia); FWF (Austria); NSFC (China); MSMT (Czechia); CZF, DFG, and VS (Germany); DST (India); INFN (Italy); MOE, MSIP, NRF, GSDC of KISTI, and BK21Plus (Korea); MNI SW and NCN (Poland); MES (particularly under Contract No. 14.A12.31.0006), RFAAE and RFBR under Grant No. 14-02-01220 (Russia); ARRS (Slovenia); IKERBASQUE and UPV/EHU (Spain); SNSF (Switzerland); NSC and MOE (Taiwan); and DOE and NSF (USA).

Table II. Systematic uncertainties in the determination of the $\eta b(1S)$ mass and width in units of MeV/c^2, and on $B = B[h_{b}(1P) \rightarrow \eta b(1S)]$ in units of $\%$.

<table>
<thead>
<tr>
<th>Source</th>
<th>ΔM_{miss}</th>
<th>$\Gamma_{\eta b}(1S)$</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_{\text{miss}}(\eta)$ fit range</td>
<td>± 0.8</td>
<td>± 3.0</td>
<td>± 2.8</td>
</tr>
<tr>
<td>$M_{\text{miss}}(\eta)$ bin width</td>
<td>± 0.0</td>
<td>± 0.1</td>
<td>± 0.0</td>
</tr>
<tr>
<td>$M_{\text{miss}}(\eta)$ polynomial order</td>
<td>± 0.1</td>
<td>± 1.9</td>
<td>± 1.6</td>
</tr>
<tr>
<td>$M_{h_{b}}(1P)$</td>
<td>± 0.0</td>
<td>± 0.8</td>
<td>± 1.1</td>
</tr>
<tr>
<td>ΔM_{miss} fit range</td>
<td>± 0.0</td>
<td>± 0.7</td>
<td>± 2.2</td>
</tr>
<tr>
<td>ΔM_{miss} bin width</td>
<td>± 0.8</td>
<td>± 2.8</td>
<td>± 5.2</td>
</tr>
<tr>
<td>γ energy calibration</td>
<td>± 0.5</td>
<td>± 0.3</td>
<td>± 1.2</td>
</tr>
<tr>
<td>Reconstruction efficiency ratio</td>
<td>...</td>
<td>...</td>
<td>± 2.8</td>
</tr>
<tr>
<td>Total</td>
<td>± 1.2</td>
<td>± 4.7</td>
<td>± 7.2</td>
</tr>
</tbody>
</table>

Table III. Summary of the results of the searches for $\Upsilon(4S) \rightarrow \eta b(1P)$ and $h_{b}(1P) \rightarrow \eta b(1S)$.

<table>
<thead>
<tr>
<th>Observable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B[\Upsilon(4S) \rightarrow \eta b(1P)]$</td>
<td>$(2.18 \pm 0.11 \pm 0.18) \times 10^{-3}$</td>
</tr>
<tr>
<td>$B[h_{b}(1P) \rightarrow \eta b(1S)]$</td>
<td>$(56 \pm 8 \pm 4)%$</td>
</tr>
<tr>
<td>$M_{h_{b}}(1P)$</td>
<td>$(9899.3 \pm 0.4 \pm 1.0) \text{MeV}/c^2$</td>
</tr>
<tr>
<td>$M_{\eta}(1S) - M_{h_{b}}(1P)$</td>
<td>$(-498.6 \pm 1.7 \pm 1.2) \text{MeV}/c^2$</td>
</tr>
<tr>
<td>$\Gamma_{\eta b}(1S)$</td>
<td>$(8.5 \pm 5) \text{MeV}/c^2$</td>
</tr>
<tr>
<td>$M_{\eta b}(1S)$</td>
<td>$(9400.7 \pm 1.7 \pm 1.6) \text{MeV}/c^2$</td>
</tr>
<tr>
<td>$\Delta M_{\eta b}(1S)$</td>
<td>$(56.7 \pm 1.7 \pm 1.6) \text{MeV}/c^2$</td>
</tr>
<tr>
<td>$\Delta M_{\eta b}(1P)$</td>
<td>$(-0.6 \pm 0.4 \pm 1.0) \text{MeV}/c^2$</td>
</tr>
</tbody>
</table>