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Abstract

In this paper, we consider physician scheduling problems originating from a medical staff
scheduling service provider based in the United States. Creating a physician schedule is a
complex task. An optimal schedule must balance a number of goals including adequately staffing
required assignments for quality patient care, adhering to a unique set of rules that depend
on hospital and medical specialties, and maintaining a work-life balance for physicians. We
study various types of physician and hospital requirements with different priorities, including
equalization constraints to ensure that each provider will receive approximately the same number
of a specified shift over a given time period. A major challenge involves ensuring an equal
distribution of workload among physicians, with the end goal of producing a schedule that will
be perceived by physicians as fair while still meeting all other requirements for the group. As the
number of such equalization constraints increases, the physician scheduling optimization problem
becomes more complex and it requires more time to find an optimal schedule. We begin by
constructing mathematical models to formulate the problem requirements, and then demonstrate
the benefits of a polyhedral study on a relaxation of the physician scheduling problem that
includes equalization constraints. A branch-and-cut algorithm using valid inequalities derived
from the relaxation problem shows that the quality of the schedules with respect to the soft
constraints is notably better. An example problem from a hospitalist department is discussed in
detail, and improvements for other schedules representing different specialties are also presented.

Keywords: physician scheduling; optimization; soft constraints; workload distribution; valid in-
equalities; mixed-integer programming

1 Introduction and background

Physician scheduling is an optimization problem that is complex and difficult to generalize. Al-
though most constraints vary by hospital and medical specialty, there are certain requirements that
should be met by any hospital, such as staffing required shifts for patient care. Some medical groups
have a set list of requirements that rarely change, while others have rules that are constantly evolv-
ing. In either case, manually scheduling physicians becomes extremely difficult as input parameters
such as schedule length, number of personnel and number of rules increase. Time spent on manual
scheduling can add up to hundreds of hours per year, even with a team of people working to create
a schedule. In many cases, hospitals and physicians settle for an unsatisfactory schedule due to
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time constraints. Such inefficiencies can be particularly impactful, as physician schedules have a
direct effect on the lives of physicians and the patients that they care for.

Studies show that physician burnout, a work-related syndrome involving emotional exhaustion,
depersonalisation, and a sense of reduced personal accomplishment [16], has increased in practicing
physicians in the United States from 2011 to 2014. The rates of burnout in primary care, family
medicine, and emergency medicine were well above 50% in 2011 and they have increased in 2014 [18].
Research has focused on the consequences of physician burnout in a number of areas. For example,
among physicians in a large health care organization, burnout and declining satisfaction were
strongly associated with reductions in professional work effort over the following 24 months [19].
Furthermore, burnout is associated with lower patient satisfaction, reduced health outcomes, and
possibly an increase in costs [4]. Addressing such a complex issue will require improvements in many
tasks physicians are currently responsible for. The question, “How to create physician schedules that
are both efficient and fair”, if answered correctly, can contribute to improving physician happiness
and productivity. With the help of automated physician scheduling, we can find a balance between
the needs of three stakeholders: physicians, hospitals and patients.

In this paper, we focus on general physician scheduling problems faced by a medical staff
scheduling service provider based in the United States. The building blocks of a physician schedule
are personnel, assignments (shifts), and a scheduling horizon (number of days scheduled). Input
parameters for personnel include information such as name, assignments that they are eligible to
work, and full time equivalent (FTE) percentage. The definition of assignments include a required
number of minimum/maximum personnel and on which days they exist. A list of several classes of
rules is available for each client to use in setting up their requirements. These rules can be defined
as hard or soft requirements. Hard requirements must be met fully while soft requirements can
be relaxed when conflicting with other rules. Rule classes offer flexibility and their usage depends
on hospital and medical specialty requirements. The objective is to minimize the sum of penalties
associated with each relaxed requirement that cannot be satisfied by the schedule.

In general, physician scheduling rules can be categorized in the following groups.

• Assignment demand rules: the option to choose a minimum and maximum number of per-
sonnel working a given assignment. For example, if a single person has to be on call during
the daytime every day, then the minimum and maximum values for the Day Call assignment
would each be set to one for every day of the week.

• Assignment compatibility rules: if more than one assignment is added into the system, then
the scheduler has to set the compatibility of each assignment relative to all other assignments.
For example, the Vacation and Day shift are incompatible assignments, meaning a single
provider cannot work both assignments on the same day.

• Equalization rules: for a fair distribution of workload. They are specified as “Equalize al-
location of assignment(s) across personnel group, allowing for at most a certain difference
between personnel”, where assignment(s), personnel group, and the certain difference value
are user input parameters. These constraints generally span the given scheduling period.

• Conditional rules: requirements that can be stated as “if-then-else” statements. For example,
“If Garfield is not on Vacation on Monday, then schedule him for either Day Call or Night
Call”.

• Block scheduling rules: stated such as “John works Day Call in a block of at least 5 and at
most 7 days in a row”.

• Numeric rules: constraints that help determine the minimum/maximum number of shifts
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scheduled. For example, “Schedule Sarah for at most 15 shifts per month”.

The first and the most important step in building a physician schedule is to understand the
exact needs of the physician group. The initial setup of requirements can take some effort because
many scheduling administrators do not have a readymade list of requirements. Even when they do
have predefined requirements, there are often constraints that they are using (but not aware of)
when manually creating schedules. Thus, there is often a need to generate multiple schedules during
implementation to add all the rules into the mathematical model. Moreover, some physician groups
prefer to create several alternative schedules due to their requirement changes in every scheduling
period. Because of the varying requirements of physician groups, different scheduling models are
needed and will require different runtimes to obtain satisfactory schedules. The runtimes can range
from a few seconds to as long as multiple days. Schedules are usually created using a mixed-integer
programming (MIP) model, and its performance is of the utmost importance. The more time
a schedule auto-generation takes, the longer administrators have to wait before they can review
the schedule and suggest additional rules. Therefore, there is always a motivation to improve the
performance of the MIP model and generate schedules of better quality (fewer soft rule violations)
within the same time limit.

To enhance the performance of the MIP model used by the medical staff scheduling service
provider, we conduct a polyhedral analysis on a relaxation of the MIP model to propose a branch-
and-cut framework with new valid inequalities. We refer to it as the relaxation of the MIP model
because it is not realistic to exhaustively include every possible rule of physician scheduling in our
model. Instead, we intend to focus on the commonly existing requirements of assignment distribu-
tion to improve the schedule quality for a broad set of physician scheduling problems. In general,
it is more time-consuming to solve MIP models for large-sized hospital groups, whose number of
physicians scheduled can range from 10 to 250, the number of assignments scheduled from 20 to
150 and the schedule length from one week to one year. After analyzing many such large hospital
groups, we narrowed down the common set of constraints to include maximum assignment demand
constraints and equalization constraints. The maximum assignment demand constraints are writ-
ten to limit the number of personnel that can be assigned to a certain shift. Hospitals do not
want to assign more than the required number of personnel on a shift, which would correspond to
unnecessary costs to compensate the additional personnel, so the maximum assignment demand
constraints are defined as hard rules and can never be relaxed in this paper. The equalization con-
straints are needed to generate a balanced schedule by having an even distribution of shifts among
all physicians, and can be defined as soft or hard, depending on other scheduling rules. Some groups
state these assignment distribution requirements as percentages of acceptable deviation from the
mean, while others focus on the specific number of assigned shifts. To test the enhanced algorithm
for comparison with the current algorithm, we form a list of hospital groups that have maximum
assignment demand constraints as well as equalization constraints and satisfy the assumptions of
our algorithm.

The remainder of the paper is organized as follows. In Section 2, we review the literature
on relevant staff scheduling problems. Section 3 describes the model relaxation and our solution
procedure. In Section 4, we use Flagstaff Medical Center Hospitals and other physician groups as
examples to illustrate the common scheduling requirements for hospitalists, the associated chal-
lenges, and the improvement on the quality of physician schedules using the proposed enhanced
algorithm. Finally, Section 5 concludes the paper by summarizing our findings and discussing future
work.
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2 Literature review

The scheduling of employees is a multifaceted and time-consuming task. The basic goal is to assign
employees to working shifts, taking into account organizational and regulatory rules, employee skills
and preferences, required staffing, and other problem specific requirements. Although the staff
scheduling problem has been extensively studied in the literature, previous studies have mostly
focused on solving very particular problems that derive from practical needs. We refer the reader
to several review papers on staff scheduling, such as [9], [10] and [25]. In the health care domain, the
literature has mostly focused on the scheduling of hospital nurses. The nurse scheduling problem
(NSP) assigns nurses to work shifts subject to a variety of hard and/or soft constraints such
as legal regulations, hospital policies and nurse preferences. This is one of the many problems
in healthcare that if solved properly adds major value to hospitals by reducing costs, increasing
retention of employees and improving quality of healthcare. Common methods for solving NSP’s
are mathematical programming, heuristics and artificial intelligence. Mathematical programming
models include traditional solution methods from linear programming, integer programming, goal
programming and networks to solve NSP’s. Cheang et al. [7] provide a bibliographic survey of many
models and methodologies available to solve the nurse rostering problems. Burke et al. [5] review
nurse rostering within the global personnel scheduling problem in healthcare and describe the role
that nurse rostering plays within the wider context of longer term hospital personnel planning.
Venkataraman and Brusco [26] develop two mixed-integer linear programs. The first model is used
to determine aggregate labor requirements for a six-month scheduling horizon. The second model
is used to disaggregate the nurse staffing plan into two-week labor schedules. They show that there
are important interactions between staffing and scheduling policies on labor costs. Maenhout and
Vanhoucke [15] present an integrated methodology for allocating a given workforce over multiple
departments based on the hospital’s nurse staffing policies, each ward’s shift scheduling policies,
and each nurse’s characteristics. Multiple objectives are considered in their model, such as cost,
job satisfaction as a result of scheduling, and the quality of nursing care. Similarly, Wright and
Mahar [29] consider organizing a nurse workforce as efficiently as possible in order to reduce the
associated costs and to increase employee satisfaction.

Physician scheduling requirements exhibit a few similarities to the NSP, such as the requirement
of adequate coverage for demand and preferences for certain shifts. The objective functions used
for the NSP include minimizing staffing cost, minimizing number of nurses scheduled, minimizing
staff dissatisfaction and many others. In physician scheduling, staffing cost is not as relevant but
minimizing deviations from the soft scheduling requirements is especially important. Furthermore,
physician schedules have to include many medical specialty-specific requirements and are in general
very different from nurse schedules. This implies that, depending on the department and the
hospital, physician scheduling requirements can vary considerably. For example, hospitalist doctors
deliver comprehensive medical care to hospitalized patients. A fundamental rule for hospitalists is
to work at least a certain number of days in a row in order to minimize the number of possible
handoffs of patients from one doctor to another. Emergency medicine however, does not particularly
require continuity of work by doctors but requires adequate staffing levels. Due to the complexity of
generalizing physician schedules, there is much less work in the literature for this problem compared
to the NSP. Erhard et al. [8] give a review on physician scheduling and show that it has gained
more interest in the last decade. To solve a physician scheduling problem, many researchers have
applied mathematical programming, including but not limited to Sherali et al. [20] for assigning
residents to night shifts, Rousseau et al. [17] for a customizable rostering problem, and Smalley
and Keskinocak [21] for an optimization-based decision support system that generates weekly and
daily schedules. These papers attempt to capture different requirements that come up in similar
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physician scheduling settings. Their assumptions, however, are based on a relatively small data set.
After analyzing over 5500 department schedules across 57 medical specialties (which includes all

clients), a recent report by a medical staff scheduling service provider [14] indicates that the most
complex physician schedules correspond to groups which must provide 24/7 patient care coverage
in an unpredictable setting, such as Emergency Medicine departments. Aligning with the report’s
findings, we found more papers in the Emergency Room (ER) physician scheduling literature than
any other specialty [2, 11, 24]. The same report also shows that scheduling complexity varies
significantly by specialty and, in general, schedules involving hospital coverage are more complicated
than those of office-based departments.

In addition to the individualized challenges of scheduling, almost all medical groups desire an
equal workload. This is not only for work-life balance of physicians, but for patient safety as well. An
unbalanced workload distribution implies excessive working hours for residents, which can in turn
lead to medical errors and affect patient care [3, 12, 27, 28]. Any research on physician scheduling
must consider a balance of workload among physicians as a hard or soft constraint, where a soft
constraint can be violated with a certain penalty. Carter and Lapierre [6] extract characteristics
of a generic ER physician scheduling problem from six hospitals in greater Montreal, Canada.
Equalization of shifts in ER physician groups is done according to seniority levels. Similarly,
Beaulieu et al. [2], Gendreau et al. [11] and Topaloglu [24] show results for their versions of ER
physician scheduling that include fair distribution of responsibilities among physicians. Levin et al.
[13] measure the distribution of workload balance among ER physician teams in terms of how
some physicians are overworked while others remain idle. Stolletz and Brunner [23] introduce a set
covering formulation that integrates physician preferences and fairness aspects into the scheduling
model to solve the flexible shift scheduling problem of physicians in hospitals. Baum et al. [1] apply
a mixed-integer program to schedule physicians in a radiology division under revenue and fairness
aspects.

While this literature review shows many related problems and solution methods, none of them
focus on solving a family of physician scheduling problems with equalization constraints. To the
best of our knowledge, this is the first paper to consider improving the efficiency of solving an MIP
model with equalization constraints, and as a result to improve the overall solutions for a class of
physician scheduling problems.

3 Model description and solution procedure

In this section, we first present the formulation of the relaxation problem, which consists of maxi-
mum assignment demand and equalization constraints as described in Section 1. We then develop
a class of valid inequalities for the relaxation and show that the separation problem can be solved
in polynomial time.

We define P as the set of physicians, A as the set of assignments, and D as the set of dates
that correspond to the individual days of the given scheduling period. Let xpda be 1 if physician
p ∈ P is assigned to assignment a ∈ A on date d ∈ D, and 0 otherwise. Variable xpda exists only if
physician p is eligible for assignment a and assignment a exists on date d. Only the physicians who
are eligible for an assignment can work it. We let Pa be the set of physicians who are eligible for
assignment a ∈ A and Da be the set of dates when assignment a ∈ A exists. Then the maximum
assignment demand constraints are formulates as∑

p∈Pa

xpda ≤ θmax
ad ∀a ∈ A, d ∈ Da, (1)
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where θmax
ad represents the maximum demand for assignment a ∈ A on date d ∈ Da. In theory,

maximum demand constraints for assignments can be relaxed. However, they are not relaxed in
practice because doing so can increase costs to compensate unnecessary personnel scheduled for an
assignment. Demand constraints (1) exist and cannot be relaxed for all the medical groups studied
in this paper.

Equalization rules are stated as “Equalize allocation of assignment group AG ⊆ A across per-
sonnel group PG ⊆ P , allowing for a difference of at most e between personnel”, where AG, PG
and e ∈ Z+ are given parameters. In addition, parameter Wad represents the weight of an assign-
ment a ∈ AG on date d ∈ Da, which can be different for different assignments depending on the
hardness level. The following inequalities (2) and (3) formulate this requirement.∑

a∈AG,d∈Da

Wadxp1da ≤ e+
∑

a∈AG,d∈Da

Wadxp2da ∀p1 6= p2 ∈ PG, (2)

∑
a∈AG,d∈Da

Wadxp2da ≤ e+
∑

a∈AG,d∈Da

Wadxp1da ∀p1 6= p2 ∈ PG. (3)

One can relax inequalities (2) and (3) by adding nonnegative variables δp1p2 and δp2p1 , respectively
to the right-hand side (RHS). We assume all equalization rules can be relaxed in this paper.

Next, we describe a class of valid inequalities for the polytope defined by constraints (1)–(3).
We introduce set AD, which consists of 2-tuple elements (a, d) with a ∈ AG and d ∈ Da, to easily
represent all of the assignment and date pairs considered in the equalization rule constraints. Among
all physician groups that we have analyzed, the most common requirement is to equalize assignments
with the same weight, particularly 1, and schedule at most one personnel on any assignment. Thus,
we assume Wad = 1 and θmax

ad = 1 for all (a, d) ∈ AD. Intuitively, the following valid inequalities
(4) imply that, given any two subsets that partition the complete set of (assignment, date) pairs,
the maximum allowable difference between the total assignments on these two subsets is limited by
an explicitly specified value.

Proposition 1. We consider two nonempty sets, AD1 and AD2, that partition set AD such that
|AD1| = k1, |AD2| = k2 = |AD| − k1, and k1 + e is an odd number. Let f = k1+e−1

2 . Then
the following inequality is valid for the problem consisting of constraints (1)–(3) with integrality
restrictions for xpda.∑

(a,d)∈AD1

xp1da ≤ f +
∑

(a,d)∈AD2

xp2da + δp1p2 ∀p1 6= p2 ∈ PG. (4)

Proof. Note that f = k1+e−1
2 ≥ 0, because by definition, set AD1 (i.e. k1 ≥ 1) is nonempty and

e ≥ 0. Additionally, f is an integer since k1 + e is an odd number. Let ADr = {(a, d) ∈ AD1 :
xp1da = 1} and |ADr| = kr. So

∑
(a,d)∈AD1

xp1da = kr. We consider the following two cases.

1. kr ≤ f .

This case is trivial since the RHS of inequality (4) is f plus non-negative variables.

2. kr ≥ f + 1.

Due to maximum demand constraint (1), the definition of set ADr, and the fact that θmax
ad = 1

for all (a, d) ∈ AD, we have
∑

(a,d)∈ADr
xp2da = 0. Then the equalization rule (2) implies

that,
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∑
(a,d)∈AD1\ADr

xp1da +
∑

(a,d)∈ADr

xp1da ≤ e+
∑

(a,d)∈AD1\ADr

xp2da +
∑

(a,d)∈AD2

xp2da + δp1p2 . (5)

Furthermore,
∑

(a,d)∈AD1\ADr
xp2da ≤ k1 − kr ≤ k1 − (f + 1) = 2f − e+ 1− (f + 1) = f − e.

After replacing
∑

(a,d)∈AD1\ADr
xp2da on the RHS of inequality (5) with f − e, we obtain

inequality (4), which completes the proof.

Example. To illustrate inequality (4), we consider a physician set P ={p1, p2, p3}, a date set
D ={M, T, W, Th, F}, an assignment group AG = A = {Off}, and a personnel group PG ={p1,
p2}, with the maximum deviation e = 1. Then the maximum assignment demand constraints are

xp1,d,Off + xp2,d,Off + xp3,d,Off ≤ 1 ∀d ∈ D,

and the equalization constraints are∑
d∈D

xp1,d,Off ≤ 1 +
∑
d∈D

xp2,d,Off + δp1p2 ,∑
d∈D

xp2,d,Off ≤ 1 +
∑
d∈D

xp1,d,Off + δp2p1 ,

xp,d,Off ∈ {0, 1} ∀p ∈ P, d ∈ D, δp1p2 , δp2p1 ≥ 0.

Therefore, the valid inequality (4) withAD1= {(Off,Th), (Off,F)}, AD2= {(Off,M), (Off,T),(Off,W)},
k1 = 2, and f = k1+e−1

2 = 1 is

xp2,Th,Off + xp2,F,Off ≤ 1 + xp1,M,Off + xp1,T,Off + xp1,W,Off + δp2p1 . (6)

For example, if xp2,Th,Off = xp2,F,Off = 1, then by maximum assignment demand constraints we
have xp1,Th,Off = xp1,F,Off = 0. To satisfy the equalization constraints with the maximum deviation
e = 1, we have to have xp1,M,Off + xp1,T,Off + xp1,W,Off + δp2p1 ≥ 1. Thus, inequality (6) is valid.

Next, we show that although there are exponentially many inequalities (4), their separation can
be conducted in polynomial time.

Proposition 2. Given a point (x̄, δ̄) ∈ R|A||D||P |+
|P |(|P |−1)

2
+ , there is an O(|A||D| log(|A||D|)) algo-

rithm to find the most violated inequality (4), if any.

Proof. Because k1 = |AD1|, f = k1+e−1
2 and

∑
(a,d)∈AD xp2da =

∑
(a,d)∈AD1∪AD2

xp2da, inequality
(4) is equivalent to

∑
(a,d)∈AD1

xp1da +
∑

(a,d)∈AD1

xp2da −
k1

2
≤ e− 1

2
+

∑
(a,d)∈AD

xp2da + δp1p2 ∀p1 6= p2 ∈ PG. (7)

Given a provider pair p1, p2 and a point (x̄, δ̄), the RHS value of inequality (7) is constant.
Thus, to find the most violated inequality (7), we maximize the LHS value of inequality (7) at
point (x̄, δ̄). Initially, we let AD1 = ∅.
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1. For each assignment and date pair (a, d) ∈ AD, we let σad = x̄p1da + x̄p2da − 1
2 . If σad > 0,

then we let AD1 ← AD1 ∪ {(a, d)}. Therefore, the maximum value of the LHS of inequality
(7) is

∑
(a,d)∈AD1

σad.

2. If f < e, then it implies |AD1| < e + 1 because f = |AD1|+e−1
2 . We sort {σad}(a,d)∈AD\AD1

in non-increasing order and add the assignment and date pairs associated with the first
(e+ 1− |AD1|) biggest σad values into set AD1. Then the updated value of f satisfies e ≤ f .

3. If e is even, then k1 has to be odd by definition (since k1 + e is defined to be odd). Similarly,
if e is odd, then k1 has to be even. Thus, if the choice of f does not satisfy this restriction, we
add one more (a, d) pair to set AD1 from the non-increasing sorted set of {σad}(a,d)∈AD\AD1

values.

If
∑

(a,d)∈AD1
σad >

e−1
2 +

∑
(a,d)∈AD x̄p2da + δ̄p1p2 , then we have found the most violated in-

equality (7) with the determined sets AD1 and AD2 = AD \AD1. Otherwise, there is no violated
inequality (7) with the given provider pair p1, p2 at point (x̄, δ̄).

Note that the complexity of Step 1 is O(|A||D|) and the complexity of Steps 2 and 3 is
O(|A||D| log |A||D|). Therefore, for inequality (4) we have a separation algorithm of complexity
O(|A||D| log(|A||D|)).

Next, we show computational results using inequalities (4) in a branch-and-cut-algorithm for
several real physician scheduling problems.

4 Case studies

In this section, we use Flagstaff Medical Center Hospitals (FMCH) as an example to elaborate
on requirements for hospitalist scheduling and analyze specific constraints in addition to showing
results from other physician groups with different specialties. Common aspects of a hospitalist
schedule include the need to assign physicians a certain number of shifts per month/schedule,
equalizing night and weekend shifts, linking of shifts and not having providers scheduled the day
after a night shift. There are block scheduling rules such as “day shifts must be worked five to seven
days in a row” to specify the number of consecutive days a provider works given an assignment.
These requirements are important for hospitalist groups because they work with patients that have
been hospitalized. Their goal is to minimize hand-offs, as transferring of patient information from
one physician to another presents a greater risk of miscommunication and mistakes. Smalley et al.
[22] maximizes continuity in a pediatric intensive care unit by introducing a handoff continuity
score (HCS) into their physician scheduling problem. The value of HCS helps in measuring the
continuity of a schedule. Schedules may also need to accommodate provider contracts requiring
them to work a given number of shifts for the fiscal year. Additionally, equalizing less desired shifts
(nights and weekends) is crucial for every provider to feel like they are being treated equally. Next,
we explore the details of specific hospitalist groups’ schedules.

4.1 Flagstaff Medical Center Hospitals

FMCH is a hospitalist group that schedules 36 providers on several assignments every three months
(quarterly). Their main assignments are Day, Night, Admitting and Swing. All of the assignments
require at least one provider to work it except for the Admitting and Swing assignments, which
can be left unfilled. All of the shifts can be worked by at most one physician, except for a certain
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number of days where two providers can be assigned. Note that these special days are not included
in the equalization constraints. The only hard rules that cannot be relaxed for FMCH group are:

• A provider can work an assignment only if there are available slots, i.e. the “maximum
number of personnel” component of assignment demand rules.

• None of the assignments can be worked together, so a provider can only work at most one
assignment every day, i.e. the assignment compatibility rules.

FMCH has a number of equalization, conditional, block scheduling and numeric rules in their
setup. It is important to note, however, that these requirements may change in the next scheduling
quarter, depending on factors such as new hires and changes to hospital policies. Furthermore, any
individual rule generally spans multiple personnel, assignments and dates, so the same rule can be
relaxed many times in a given scheduling period if it is defined as a soft rule. The critical issue to
address in these cases is what penalty value to set for each soft rule. It takes a few schedule runs to
determine which rules are in fact the most important, so the penalties are adjusted until a balance
is achieved. The penalty ranges from 1,000 to 1,000,000, with a larger penalty indicating a higher
cost for violating the corresponding rule.

FMCH began implementation by defining an ideal set of rules. These rules were a starting point
and over time they evolved considerably. The number of hard rules was limited because they can
cause the scheduling problem to be infeasible. If there is no possible solution to a set of rules, it can
take anywhere from a few minutes up to several hours to determine the conflicting requirements.
With FMCH, initially all equalization requirements were defined as hard rules, but this was not
practical due to previously entered provider requests for leave and other assignments. In the final
setup all of the ideal rules were defined as soft with high priorities, with additional rules having a
lower priority. These additional rules were included so that if an ideal rule was violated it would
be in a more controlled way. Next, we give a select list of rules that can be relaxed under their
respective categories.

Equalization rules consider the complete scheduling period and different sets of physicians:

• Equalize allocation of Admitting allowing for a difference of at most 4 between personnel.

• Equalize allocation of Day shifts allowing for a difference of at most 6 between personnel.

• Equalize allocation of Night shifts allowing for a difference of at most 3 between personnel.

• Equalize allocation of Swing allowing for a difference of at most 4 between personnel.

• Equalize allocation of shifts that can be worked on weekends allowing for a difference of at
most 4 between personnel.

Conditional rules:

• Day assignments are divided into seven categories. For each category, there is a conditional
rule that says if a provider is assigned to a Day assignment of a certain category on a given
day, then they have to work the same assignment the day before and the following day.

• A generalized rule says that if a provider has been working on any shift (for a number of days
in a row), then their blocks of time off must be a minimum of three days. This is important
to give providers time to recuperate.

• A more specific set of rules says that if a provider has worked for n days in a row on day
shifts, then their blocks of time off must be a minimum of n− 2 days, where n = 5, 6, 7.

• Do not schedule certain shifts one after the other (e.g. Day shifts after a Night shift). One
specific rule is “If a provider is on Swing shift today, then do not schedule them on a Day
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shift tomorrow.”

Block scheduling rules:

• Nocturnists (who specialize in working overnight shifts) work in a block of at least 3 and at
most 6 days in a row.

• Providers other than nocturnists work in a block of at least 5 and at most 7 days in a row.
Assignments include all Day shifts.

• Providers other than nocturnists work in a block of at least 2 and at most 6 days in a row on
the Swing shift.

• Rules differ for providers with FTE values less than 100%.

Numeric rules:

• Staff assignments Admitting and Swing everyday.

• Nocturnists should work between 11 and 13 Night shifts a month.

• 100% FTE providers should work between 41 and 43 shifts (including Day shifts, Night shifts,
Admitting and Swing) every quarter.

• 80% FTE providers should work between 32 and 33 shifts every quarter.

• 50% FTE providers work between 21 and 22 shifts every quarter.

The relaxation of soft constraints can be due to a number of reasons such as conflicting soft
rules, shift/vacation requests of physicians or not finding an optimal solution within the given time
limit. The schedule being studied for FMCH has 641 requests in total, which the model works
around when building the schedule. It is common for requests entered by physicians on certain
assignments and days to violate some soft rules, especially during holidays due to vacation requests.
The main objective becomes staffing assignments adequately so other rules become less important.

4.2 Comparison of FMCH Schedules

We now compare the schedules created with the current system and the new algorithm that utilizes
valid inequalities (4). The objective is to find a schedule that minimizes the sum of the penalty
associated with the violated soft rules. For FMCH as well as other cases presented in Subsection
4.3, we use Mosel with FICO Xpress 8.0.5, on a machine with Intel(R) Xeon(R) CPU X5690 at
3.47GHz with 16GB RAM. Time limit and MIP tolerance parameters depend on the difficulty of
each specific problem. We incorporate inequalities (4) to the branch-and-cut algorithm by using
the exact separation algorithm given in Proposition 2. Cuts are added for any branch-and-bound
node with depth of less than or equal to 20.

With the time limit of 6 hours, the current system produces a FMCH schedule with a penalty
of 269,256,000. After computation with the enhanced algorithm, the new system yields a schedule
with a total penalty of 262,712,000, a reduction of 6,544,000. Comparing the sum of violation
values, we see that the new algorithm relaxed fewer rules. We can also use the percentage of how
close we were able to get to the optimal solution to describe the improvement in schedules, with a
lower percentage indicating a better schedule. The optimality gap of the current system’s schedule
is 66.70%, while we obtain a gap of 47.25% with the new system. If we extend the time limit, the
optimality gap will be closed further. The computation is terminated at the current time limit for
comparison purpose and to balance with the client’s concern over time consumption.

Figure 1 shows the differences in rule violations. The relaxed set of rules are very similar in
both schedules, but the number of times they were relaxed is higher with the current algorithm for
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eight rule types (R20019, R307, R20034, R20048, R304, R20035, R318, R306) and with the new
algorithm for three rule types (R20021,R345, R309). The rules, shown on the horizontal axis in
both Figures 1a and 1b, are listed from left to right in non-increasing order of penalties. Their

(a) Number of violations for each rule type (b) Total penalties for each rule type

Figure 1: Comparison of rule violations for FMCH schedule generated by the current and enhanced
algorithms.

descriptions and penalty values are presented in Table 1.

Table 1: Descriptions and penalties for rules shown in Figure 1.

Rule Number Description Penalty

R20019 100% FTE works: 41-43 times per scheduling period 1000000
R20021 80% FTE works: 32-33 times per scheduling period 1000000
R307 Day: Schedule a min of 4 max of 7 in a row 1000000

R20034 Work in a block of at most 6 days in a row 1000000
R20048 Night: Schedule a min of 3 and max of 6 in a row 1000000
R304 4 days off after any working shifts of 6 days in a row 1000000
R345 Day: Schedule a min of 5 max of 7 in a row 999000

R20035 Work in a block of at most 5 days in a row 500000
R318 Equalize Swing assignment 444000
R306 4 days off after any work 50000
R309 5 days off after any work 1000

Furthermore, the new algorithm is able to satisfy one more equalization rule: “Equalize alloca-
tion of Swing, allowing for a difference of at most 4 between personnel”, which is violated by the
current algorithm. Table 2 shows how the number of Swing shifts for each physician changes in
order to satisfy this equalization rule. We refer to an equalization rule as relaxed when at least one
pair of doctors does not satisfy it. For example, in Table 2, with the current algorithm, the differ-
ence of number of swing assignments between physician 1 and physician 3 is 6, which is greater than
the maximum allowed difference, 4. This leads to the relaxation of the equalization rule. With the
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Table 2: Number of Swing shift assignments for five physicians in FMCH with the current and
enhanced system

Number of swing shift assignments
Physician Current System Enhanced System

1 8 6
2 8 8
3 2 4
4 6 7
5 9 7

enhanced system, it shows that the equalization requirement “allowing for a difference of at most
4 between personnel” is met exactly, which is an improvement over the current system brought by
the enhanced algorithm.

4.3 Scheduling Improvements for Other Physician Groups

The new algorithm has also been used to improve the efficiency and quality of schedule generation
for many other physician groups. In this subsection, we discuss the scheduling results of eight dif-
ferent physician groups, which were chosen to demonstrate the variability in setups among different
specialties. For confidentiality reasons, we refer to them as Clients 1 through 8. Each group has
their own equalization requirements, which are defined as relaxable and are elaborated below. In
addition, Table 3 shows the specialty, number of equalization rules and current time limits for each
client setup.

• Client 1 has equalization rules that allow for a difference of at most 1 shift between personnel
every month. Only a certain set of assignments are equalized. They have providers with
different FTE percentages, so shift numbers are equalized within each percentage group.

• Client 2 has rules to equalize the Monday through Thursday distribution of a particular
assignment across all call physicians, with a deviation of 1 shift being allowed on any given
day.

• Client 3 equalizes different assignments for four different provider groups. Three of the rules
require a difference of at most 2 between personnel while the fourth rule allows for at most 7.

• Client 4 equalizes Night, Day, Weekend, Hospitalist and Teaching assignments across six
different provider groups. The number of shifts assigned per provider can differ by at most
0, 1, 2 or 7 depending on the provider group and assignment.

• Client 5 equalizes all Call assignments (21 total), Day and Night shifts. The maximum allowed
deviation between personnel is 1 shift in all rules.

• Client 6 equalizes two Day Call, two Screening and five “MSK” shifts. The maximum allowed
deviation between personnel is 1 shift for all except MSK shifts, which are allowed to have a
difference of at most 2.

• Client 7 has equalization rules based on provider seniority. They equalize assignments such
as Sick Call, Triage, Overnight and Weekend. Depending on the group of doctors and the
assignment, the maximum allowed deviation of assignments per month ranges from 1 to 4.
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• Client 8 has equalization rules over a 1 year scheduling period, one of the longest schedul-
ing horizons. Providers with 100%, 50% and 25% FTE are equalized with separate rules.
Assignments include Eve, Night and Weekend.

Table 3: Number of equalization rules and schedule runtime limits for eight different clients.

Client Specialty Number of Equalization Rules Time Limit(s)

1 Radiology 17 14400
2 Anesthesiology 8 10800
3 Radiology 4 10800
4 Pediatrics 44 7200
5 Anesthesiology 23 14400
6 Radiology 7 10800
7 Emergency Medicine 9 25200
8 Hospitalist 12 55000

The time limit for the algorithm and other constraints vary for each client schedule, as shown
in Table 3. Time limits are set after running multiple schedules for the same client. The goal is
to find a balance between model runtime and schedule quality. Therefore, being able to obtain a
better schedule (which is measured with the weighted sum of penalties for each relaxable constraint)
within the same time limit for a given client rule setup is a performance indicator of the enhanced
algorithm. Again we use the percentage of how close the result is to the optimal solution to describe
the improvement in schedules. Table 4 illustrates that the enhanced algorithm was able to improve
the quality of schedules by at least 0.2%, up to 7.13%, with an average improvement of 2.49%.

Table 4: Comparison of solutions (within the same time limit) obtained by current system and
system with enhancements to equalization rules for eight different client schedules.

Number of Closeness of solution to optimal solution (%)
Client physicians, assignments, days Current system Enhanced system

1 32, 52, 72 9.11% 8.23%
2 30, 35, 403 10.73% 9.22%
3 38, 34, 219 15.57% 8.44%
4 17, 14, 158 46.51% 43.82%
5 36, 47, 73 95.75% 95.56%
6 39, 68, 93 10.15% 9.73%
7 64, 60, 68 3.37% 1.65%
8 104, 105, 65 60.29% 54.95%

5 Conclusions

Physician scheduling presents very challenging problems. Our goal in this research is to obtain
better schedules and make work-life more enjoyable for physicians. Current state-of-the-art MIP
solvers like Xpress, CPLEX and Gurobi can have difficulty in finding the best available schedules.
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In this work, we highlight the use of advanced optimization tools for this problem and show how
we can work with solvers to improve the solutions for a class of physician scheduling problems that
include equalization constraints.

While the benefits of this project cannot be measured directly in dollars, any improvement in
the quality of a schedule is valuable for physicians and hospitals. In most scheduling problems
it is impossible to find the perfect schedule, so a balance is required between computing times
and schedule quality. Having fewer violations of rules can directly impact a physician’s life. For
example, in FMCH’s case, we managed to have one fewer equalization rule be violated which can
mean freeing up time for a provider who had been covering more than their fair share. In the long
term, these types of schedule improvements can reduce physician burnout and increase a hospital’s
physician retention rate. There are considerable differences in the resulting schedules, and the
number of rule violations has decreased overall with the new algorithm.

We have studied one set of requirements, namely equalization of shift assignments among
providers, but there are many more rule types that can be considered for further analysis. As
a next step, we are interested in examining other common rule types to find better quality sched-
ules.
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