Top-pair and tW production at approximate N3LO

Nikolaos Kidonakis
Kennesaw State University, nkidonak@kennesaw.edu

Follow this and additional works at: https://digitalcommons.kennesaw.edu/facpubs

Part of the Physics Commons

Recommended Citation
Kidonakis, Nikolaos, "Top-pair and tW production at approximate N3LO" (2017). Faculty Publications. 4192.
https://digitalcommons.kennesaw.edu/facpubs/4192

This Article is brought to you for free and open access by DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Faculty Publications by an authorized administrator of DigitalCommons@Kennesaw State University. For more information, please contact digitalcommons@kennesaw.edu.
Top-pair and tW production at approximate N^3LO

Nikolaos Kidonakis

Department of Physics
Kennesaw State University
Kennesaw, GA 30144, USA

1 Introduction

I present approximate N^3LO theoretical results for top-antitop pair production, and for single-top production in association with a W boson. The higher-order corrections are from soft-gluon radiation, which is dominant near partonic threshold. I present results for total cross sections as well as transverse-momentum and rapidity distributions of the top quark, and compare with data at LHC energies.

2 Top-pair production

The top quark is the heaviest elementary particle to have been discovered to date. Because of its large mass, its near-threshold production at current colliders receives large radiative corrections from soft-gluon emission. These corrections have long been known to be significant for $t\bar{t}$ production, and they approximate exact results, when known, very accurately.

Resummation of the double-differential cross section at next-to-next-to-leading logarithm (NNLL) accuracy in moment space was derived in Ref. [1] using the two-loop soft anomalous dimension [1, 2]. Fixed-order expansions of the resummed cross section in momentum space bypass the problem of using a prescription for divergences, and they provide excellent and reliable predictions for the higher-order corrections. General expressions for the expansions have been derived and used for various processes at NNLO [3] and N^3LO [4]. Approximate N^3LO (aN3LO) predictions for double-differential cross sections in $t\bar{t}$ production have appeared in Ref. [5]. These aN3LO corrections are needed for precision physics as they considerably enhance the total cross section and differential distributions.

An interesting question in the study of $t\bar{t}$ production is the effect of scale choice on the top-quark p_T distributions. Traditionally, two central choices have been made

1Talk presented at the APS Division of Particles and Fields Meeting (DPF 2017), July 31-August 4, 2017, Fermilab. C170731
for the factorization and renormalization scales: $\mu = m$, the top quark mass; and $\mu = m_T = (p_T^2 + m_T^2)^{1/2}$, the transverse mass. The difference in the p_T distributions using the two scales thus grows with p_T.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1}
\caption{Top quark aN3LO normalized p_T distributions compared with CMS dilepton data at (left) 7 TeV \cite{6} and (right) 13 TeV \cite{7} LHC energies.}
\end{figure}

In Fig. 1 we display the top quark normalized p_T distributions at 7 TeV (left plot) and 13 TeV (right plot) LHC energies. We compare with data from CMS in the dilepton channel at 7 TeV \cite{6} and 13 TeV \cite{7}. We find excellent agreement in both cases, especially with the choice $\mu = m_T$, which better describes the data at high p_T. We have used MMHT2014 pdf \cite{8}; the results with CT14 pdf \cite{9} are similar.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig2}
\caption{Top quark aN3LO p_T distributions compared with (left) ATLAS \cite{10} and (right) CMS \cite{11} lepton+jets data at 8 TeV LHC energy.}
\end{figure}
In Fig. 2 we display the boosted top quark p_T distributions, with theoretical uncertainty, at 8 TeV LHC energy, and compare with lepton+jets data from ATLAS [10] (left plot) and CMS [11] (right plot). Again, the calculations with the choice $\mu = m_T$ better describe the data at high p_T.

3 tW production

The associated production of a top quark and a W boson, via the partonic process $bg \to tW^-$, was studied at NNLL accuracy in Ref. [12] using results for the two-loop soft anomalous dimension. Approximate NNLO (aNNLO) predictions for the total tW^- production cross section were given in [12]. The cross section for $\bar{t}W^+$ production is the same.

Top-quark p_T distributions at aNNLO for this process were given in Ref. [13]. More recently, aN3LO results for the total cross section and the top p_T and rapidity distributions in tW production were presented in Ref. [14].

![Figure 3: Total aN3LO cross section for tW production at LHC energies compared with data [15, 16, 17, 18] from ATLAS and CMS.](image)

In Fig. 3 we show the total aN3LO cross section, together with theoretical uncertainty, for tW production and compare with LHC data. The theoretical predictions are in very good agreement with the data from ATLAS [15] and CMS [16] at 7 TeV, an ATLAS/CMS combination at 8 TeV [17], and ATLAS at 13 TeV [18].
The inset plot in Fig. 3 shows the aN³LO/aNNNLO ratio. It is clear that the third-order soft-gluon corrections are non-negligible.

Figure 4: Top quark aN³LO \(p_T \) and rapidity distributions in \(tW \) production.

In the left plot of Fig. 4 we display the aN³LO top quark \(p_T \) distributions in \(tW \) production at LHC energies. The inset plot shows the distribution at 13 TeV energy together with the theoretical uncertainty.

In the right plot of Fig. 4 we display the aN³LO top quark rapidity distributions in \(tW \) production at LHC energies. The inset plot shows the aN³LO/aNNLO ratio, with theoretical uncertainty, at 13 TeV. We observe that the soft-gluon corrections are substantial, particularly at large values of rapidity.

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. PHY 1519606.

References

