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Soft-gluon corrections in top-quark production

Nikolaos Kidonakis

Department of Physics, Kennesaw State University,

Kennesaw, GA 30144, USA

Abstract

I review calculations of soft-gluon corrections for top-quark production in hadron col-

lisions. I describe theoretical formalisms for their resummation and for finite-order ex-

pansions. I show that soft-gluon corrections are dominant for a large number of top-quark

processes. I discuss top-antitop pair production as well as single-top production, including

total cross sections and differential distributions, and compare with data from the LHC

and the Tevatron. I also discuss top-quark production in association with charged Higgs

bosons, Z bosons, and other particles in models of new physics.

1 Introduction

Top-quark physics is a central element in the exploration of particle physics at hadron colliders.
The top quark occupies a special place as the heaviest elementary particle to have been found,
and the only quark that decays before it can hadronize. It was discovered via the top-antitop
pair production process in proton-antiproton collisions at the Fermilab Tevatron by the CDF
and D0 Collaborations in 1995 [1, 2]. Single-top production events were also first seen at the
Tevatron [3, 4]. The top quark was later rediscovered at the LHC in tt̄ [5, 6] processes. The
LHC now serves as a top-quark factory.

In this paper I review top-quark production in hadron colliders, focusing on higher-order
corrections from soft-gluon resummation. There is a very long history of resummations for top-
pair production, Refs. [7-67], for single-top production, Refs. [68-77], as well as for top-quark
production in models of new physics, Refs. [78-84].

Next-to-leading order (NLO) [85–87] and next-to-next-to-leading order (NNLO) [88–91]
corrections have been available for top-pair production for some time. For single-top production,
NLO corrections for the t and s channels [92] and for tW production [93] are also known, while
NNLO corrections [94–96] have been calculated for the t-channel. Higher-order soft-gluon
corrections can further improve the NLO and NNLO results.

In Section 2, I begin with a brief history of soft-gluon resummation, followed by a general
discussion of higher-order soft-gluon corrections, factorization, renormalization-group evolu-
tion, resummation, and expansions at NLO, NNLO, and next-to-next-to-next-to-leading order
(N3LO).

In Section 3, I continue with a review of the cusp anomalous dimension and of soft anomalous
dimension matrices for tt̄ production through two loops. In Section 4, I provide results for the
total tt̄ cross sections, the top-quark transverse momentum, pT , distributions, and the top-
quark rapidity distributions at the LHC and the Tevatron, as well as the forward-backward
asymmetry at the Tevatron.
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In Section 5, I discuss single-top production, including t-channel and s-channel produc-
tion, and tW production, and I present total cross sections and top-quark pT and rapidity
distributions. In Section 6, I discuss top-quark production in association with a charged Higgs
boson, and in association with gauge bosons via anomalous couplings in new-physics models. I
conclude with a summary in Section 7.

2 Soft-gluon corrections

Soft-gluon corrections arise from the emission of low-energy gluons, and they result from in-
complete cancellations of infrared divergences between virtual diagrams and diagrams with real
emission.

These corrections appear in the perturbative series as plus distributions involving loga-
rithms of a variable that measures the kinematical distance from threshold. For the nth-order
perturbative corrections, the leading logarithms are those with the highest power, 2n− 1; the
next-to-leading logarithms have a power of 2n − 2; etc. The effects of soft-gluon corrections
are particularly relevant near partonic threshold. At partonic threshold there is no energy for
additional radiation, but the top quark may have non-zero momentum and is not restricted to
be produced at rest. Thus, partonic threshold is a more general concept than production or
absolute threshold, where the top quark is produced at rest.

For top-antitop production, several threshold variables have been used for resummation. In
single-particle-inclusive (1PI) kinematics, the partonic threshold variable is s4 = s+t+u−∑m2

where s, t, and u are the standard kinematical variables and the sum is over the masses squared
of all particles in the scattering. At partonic threshold, s4 → 0. In pair-invariant-mass (PIM)
kinematics, the partonic threshold variable is 1−z = 1−M2

tt̄/s, where Mtt̄ is the invariant mass
of the top-antitop pair; at partonic threshold z → 1. In resummation using absolute threshold
- a special limiting case of partonic threshold as we discussed above - the threshold variable is

β =
√

1− 4m2
t/s, where mt is the top-quark mass; at absolute threshold, β → 0.

Formalisms that use partonic threshold in 1PI or PIM kinematics involve a general re-
summation for double-differential distributions, from which single distributions or total cross
sections can be derived by appropriate integrations. Formalisms that use absolute threshold
are limited only to total cross sections.

Similarly, 1PI kinematics have been used in resummations for single-top production using
the threshold variable s4.

Soft-gluon corrections are dominant near threshold and usually even far from threshold.
These corrections can be formally resummed to all orders in perturbative QCD. This resum-
mation, i.e. exponentiation, follows from the factorization properties of the cross section and
from the renormalization-group evolution of the functions in the factorized form.

Leading-logarithm (LL) resummations and their finite-order expansions for top-antitop pair
production were developed and used in various formalisms in Refs. [7–12, 15, 18]. Next-to-
leading-logarithm (NLL) resummations and their expansions were developed and used for
double-differential cross sections in Refs. [13, 17, 20–25] using partonic threshold, and in Refs.
[19, 26] for only total cross sections. Corrections beyond NLL in expansions were calculated
in Refs. [23,25,27,28,30,31,33]. Next-to-next-to-leading-logarithm (NNLL) resummations and
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expansions were developed in Refs. [35–41, 45, 48–51].
Leading logarithms can be resummed in terms of universal terms for the emission of collinear

and soft gluons; these universal terms only depend on the identity of the incoming and outgoing
partons. However, at NLL accuracy and beyond [13, 17] resummation involves the process-
dependent color exchange in the hard-scattering process.

More explicitly, in 1PI kinematics the soft-gluon terms are of the form [lnk(s4/m
2
t )/s4]+

where k ≤ 2n− 1 for the nth-order perturbative corrections, and s4 is the kinematical distance
from partonic threshold described above. We define

Dk(s4) ≡
[

lnk(s4/m
2
t )

s4

]

+

=
lnk(s4/m

2
t )

s4
θ(s4 −∆) +

1

k + 1
lnk+1

(

∆

m2
t

)

δ(s4) , (1)

where ∆ is a small parameter that separates the hard-gluon, s4 > ∆, and soft-gluon, s4 < ∆,
regions.

In PIM kinematics the soft-gluon terms are of the form [lnk(1 − z)/(1 − z)]+, where again
k ≤ 2n − 1 for the nth-order perturbative corrections, and 1 − z is the kinematical distance
from partonic threshold described above. We define

Dk(z) ≡
[

lnk(1− z)

1− z

]

+

=
lnk(1− z)

1− z
θ(1− z −∆) +

1

k + 1
lnk+1(∆) δ(1− z) , (2)

where, again, ∆ is a small parameter that separates the hard-gluon, 1− z > ∆, and soft-gluon,
1− z < ∆, regions.

2.1 Factorization and Resummation

We consider top-quark production in proton-proton collisions at the LHC,

p(pA) + p(pB) → t(pt) +X (3)

and proton-antiproton collisions at the Tevatron

p(pA) + p̄(pB) → t(pt) +X (4)

where t denotes the observed top quark, with X all additional final-state particles. The partonic
processes involved are of the form

f1(p1) + f2 (p2) → t(pt) + X (5)

where f1 and f2 are partons (quarks and/or gluons). We define the usual kinematical variables
s = (p1 + p2)

2, t = (p1 − pt)
2, u = (p2 − pt)

2. We also define, as before, the 1PI partonic
threshold variable s4 = s+ t+ u−∑

m2.
The factorized form of the (differential) cross section may be written in 1PI kinematics as

dσpp→tX =
∑

f1,f2

∫

dx1 dx2 φf1/h1
(x1, µF )φf2/h2

(x2, µF ) σ̂
f1f2→tX(s4, s, t, u, µF , µR) (6)
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where µF is the factorization scale and µR is the renormalization scale. A similar expression
applies to PIM kinematics. The parton distribution functions (pdf), φ, describe the fraction
of the proton momentum carried by the partons, with x1 and x2 the momentum fractions of
partons f1 and f2 in protons A and B respectively.

Soft-gluon corrections in the partonic cross section, σ̂f1f2→tX , contribute terms with plus
distributions of logarithms of s4 or 1 − z, defined via their integral with the pdf. In 1PI
kinematics

∫ s4max

0
ds4 φ(s4)

[

lnk(s4/m
2
t )

s4

]

+

≡
∫ s4max

0
ds4

lnk(s4/m
2
t )

s4
[φ(s4)− φ(0)]

+
1

k + 1
lnk+1

(

s4max

m2
t

)

φ(0) , (7)

while in PIM kinematics
∫ 1

zmin

dz φ(z)

[

lnk(1− z)

1− z

]

+

≡
∫ 1

zmin

dz
lnk(1− z)

1− z
[φ(z)− φ(1)]

+
1

k + 1
lnk+1 (1− zmin)φ(1) . (8)

These are equivalent definitions to Eqs. (1) and (2), respectively.
The resummation of soft-gluon contributions results from the factorization properties of

the cross section in moment space. Moments of the partonic cross section are defined by
σ̂(N) =

∫

(ds4/s) e
−Ns4/s σ̂(s4) in 1PI kinematics, and σ̂(N) =

∫

dz zN−1 σ̂(z) in PIM kine-
matics. Logarithms of s4 or 1 − z transform in moment space into logarithms of N , which
exponentiate.

We write the moment-space partonic cross section, in 4− ǫ dimensions, in factorized form,
as

σf1f2→tX(N, ǫ) = φf1/f1(N, µF , ǫ) φf2/f2(N, µF , ǫ) σ̂
f1f2→tX(N, µF , µR) (9)

with φ(N) =
∫ 1
0 dx xN−1φ(x).

We then refactorize the cross section [13, 17] as

σf1f2→tX(N, ǫ) = Hf1f2→tX
IL (αs(µR)) S

f1f2→tX
LI

(

mt

NµF
, αs(µR)

)

×
∏

Jin (N, µF , ǫ)
∏

Jout (N, µF , ǫ) , (10)

where I and L are color indices.
The Hf1f2→tX

IL is the hard-scattering function that does not depend on N , and it describes
contributions from the amplitude and the complex conjugate of the amplitude for the process.
The soft-gluon function Sf1f2→tX

LI describes the coupling of soft gluons to the partons in the
scattering. The analytical form of HIL and SLI depends on the process, and in general both
functions are matrices in color space in the partonic scattering. The Jin and Jout are jet functions
that describe universal soft and collinear emission from incoming and outgoing massless partons.

The N -dependence of the soft matrix SLI can be resummed via renormalization group
evolution [13, 17]. We have

Sb
LI = (Z†

S)LCSCDZS,DI (11)
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where Sb is the unrenormalized quantity and ZS is a matrix of renormalization constants. Thus
SLI satisfies the renormalization group equation

(

µ
∂

∂µ
+ β(gs)

∂

∂gs

)

SLI = −(Γ†
S)LKSKI − SLK(ΓS)KI (12)

where g2s = 4παs, and β is the QCD beta function

β(αs) ≡
1

2

d lnαs

d lnµ
= −

∞
∑

n=0

βn

(

αs

4π

)n+1

(13)

where β0 = (11CA−2nf )/3, CA = Nc, with Nc = 3 the number of colors, and nf is the number
of light quark flavors (nf = 5 for top production).

The soft anomalous dimension, ΓS, controls the evolution of the soft function S. We de-
termine ΓS from the coefficients of the ultraviolet poles of eikonal diagrams. In dimensional
regularization ZS has 1/ǫ poles, and ΓS is given in terms of the residue of ZS [13,17]. In general,
ΓS is a matrix in color space as well as a function of the kinematic variables s, t, u.

The resummed cross section in moment space is derived from the renormalization-group
evolution of the functions in the factorized cross section, and can be written as

σ̂f1f2→tX
resum (N) = exp





∑

i=1,2

Ei(Ni)



 exp





∑

j

E ′
j(N

′)





× exp





∑

i=1,2

2
∫

√
s

µF

dµ

µ
γi/i

(

Ñi, αs(µ)
)





× tr

{

Hf1f2→tX
(

αs(
√
s)
)

exp

[

∫

√
s/Ñ ′

√
s

dµ

µ
Γ† f1f2→tX
S (αs(µ))

]

×Sf1f2→tX

(

αs

(√
s

Ñ ′

))

exp

[

∫

√
s/Ñ ′

√
s

dµ

µ
Γf1f2→tX
S (αs(µ))

]}

(14)

where the trace is taken of the product of the color-space hard and soft matrices, and the
exponents of ΓS.

The collinear-gluon and soft-gluon contributions from the initial-state partons are resummed
in the first exponential in Eq. (14), with exponent

Ei(Ni) =
∫ 1

0
dz

zNi−1 − 1

1− z

{

∫ (1−z)2

1

dλ

λ
Ai (αs(λs)) +Di

[

αs((1− z)2s)
]

}

. (15)

Here we have defined N1 = N(m2
t −u)/m2

t and N2 = N(m2
t −t)/m2

t . The perturbative series for

Ai is written as Ai =
∑∞

n=1(αs/π)
nA

(n)
i , with A

(1)
i = Ci [97] where Ci = CF = (N2

c − 1)/(2Nc)

for a quark or antiquark, while Ci = CA for a gluon; and A
(2)
i = CiK/2 [98] where K =

CA (67/18− ζ2)− 5nf/9 [99], with ζ2 = π2/6. Also the perturbative series for Di is written as

Di =
∑∞

n=1(αs/π)
nD

(n)
i , with D

(1)
i = 0 in Feynman gauge.
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The collinear-gluon and soft-gluon contributions from final-state massless quarks and/or
gluons are resummed in the second exponential, with exponent

E ′
j(N

′) =
∫ 1

0
dz

zN
′−1 − 1

1− z

{

∫ 1−z

(1−z)2

dλ

λ
Aj (αs (λs)) +Bj [αs((1− z)s)]

+Dj

[

αs((1− z)2s)
]}

(16)

where we have defined N ′ = Ns/m2
t . The perturbative series for Bj is written as Bj =

∑∞
n=1(αs/π)

nB
(n)
j , with B(1)

q = −3CF/4 for a quark or antiquark, and B(1)
g = −β0/4 for a

gluon [97, 98]. Note that this exponent is not needed in tt̄ or tW production but it is used in
s-channel and t-channel single-top production.

The factorization-scale dependence in the third exponential is given in moment space by
the anomalous dimension of φi/i, which is γi/i = −Ai ln Ñi + γi, where Ñi = Nie

γE with γE the

Euler constant, and γi =
∑∞

n=1(αs/π)
nγ

(n)
i with γ(1)

q = 3CF/4, γ
(1)
g = β0/4.

The perturbative series for the hard function H and the soft function S are written as
H = αdαs

s

∑∞
n=0(αs/π)

nH(n) and S =
∑∞

n=0(αs/π)
nS(n), respectively, where dαs

denotes the
power of αs in the leading-order (LO) cross section. The LO cross section for each partonic
process is given by the trace of the product of the lowest-order hard and soft matrices: σB =
αdαs

s tr[H(0)S(0)].
Noncollinear soft-gluon emission is described by the soft anomalous dimension ΓS, with

perturbative expansion

ΓS =
∞
∑

n=1

(

αs

π

)n

Γ
(n)
S (17)

The first term in the series, Γ
(1)
S , requires one-loop calculations and is needed for NLL resum-

mation, while Γ
(2)
S requires two-loop calculations and is needed for NNLL resummation.

2.2 Methods and prescriptions

There are numerous and very substantive differences between the various resummation ap-
proaches in the literature, which have been detailed previously in Refs. [53, 60]. Some for-
malisms have been developed to do the resummation only for the total cross section while
others are for the double-differential cross section; some formalisms use moment-space pertur-
bative QCD while others use Soft-Collinear Effective Theory (SCET). The treatment of sub-
leading logarithms in different formalisms and the approach to deal with infrared divergences
via prescriptions or finite-order expansions lead to large differences in numerical results.

The more general double-differential approach to resummation can be expressed in 1PI
kinematics for the differential cross section in top-quark transverse momentum and rapidity,
dσ/dpTdy, where the soft limit is s4 → 0, or in PIM kinematics for the differential cross
section in top-pair invariant mass and scattering angle, dσ/dMtt̄ d cos θ, where the soft limit
is z → 1. Such double-differential approaches have been developed in moment-space in QCD,
Refs. [13,17,20,22–25,27,28,30,49,60,61,64], as well as in SCET, Refs. [40,41,45,50]. Double-
differential distributions, single-differential distributions, and total cross sections can all be
derived via the above formalisms. Resummations that are developed for the total cross section
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only refer to production (or absolute) threshold and resum logarithms of β =
√

1− 4m2
t/s,

Refs. [19, 31, 38, 47, 48, 55]. The soft limit here is the production threshold limit β → 0 (where
the top quark velocities are zero), which is a special case of the more general partonic threshold.

The resummed cross section encounters infrared divergences that require a prescription to
be dealt with, and the choice of prescription is to an extent arbitrary. Moreover, the numerical
results depend greatly on the prescription, and differences between prescriptions are typically
larger than corrections beyond NNLO. In order to avoid arbitrary prescription dependence, an
excellent approach is to expand the resummed cross section to a fixed order, usually NNLO or
N3LO; this gives better control of subleading terms.

The relative size of soft-gluon corrections has been argued about since the 1990’s. The LL
results in Refs. [7–9] and [10, 12, 18] argued for large effects. The LL results in [11, 15], using
the minimal prescription, argued for tiny corrections, one or two orders of magnitude smaller.
Similarly at NLL, the results in Ref. [19], which were based on the minimal prescription, were
much smaller than the results in Refs. [23, 24], which were based on Refs. [13, 17, 20] and
used fixed-order expansions. In Ref. [55] the predictions with minimal prescription are small
for both Tevatron and LHC energies and they account for only a very small fraction of the
NNLO corrections. In contrast the predictions in Ref. [27, 33] and the NNLL predictions in
Refs. [49, 51], using fixed-order expansions, predicted the NNLO corrections, which are large,
extremely well.

2.3 NLO, NNLO, and N3LO expansions

Here we present expansions of the resummed cross section through N3LO. We use the Dk

notation for the logarithmic plus distributions of Eqs. (1) and (2). We give results for 1PI
kinematics first.

The NLO soft-gluon corrections from the expansion of the resummed cross section are given
by

σ̂(1) = σBαs(µR)

π
{c3D1(s4) + c2D0(s4)}+

αdαs+1
s (µR)

π
AcD0(s4) (18)

where σB is the LO term. The LL coefficient is

c3 =
∑

i

2A
(1)
i −

∑

j

A
(1)
j , (19)

and it multiplies σB. The NLL terms are in general not all proportional to σB. The coefficient
c2 is defined by c2 = cµ2 + T2, with cµ2 = −∑i A

(1)
i ln(µ2

F/m
2
t ) denoting the terms involving

logarithms of the scale, and

T2 =
∑

i

[

−2A
(1)
i ln

(

−ti
m2

t

)

+D
(1)
i − A

(1)
i ln

(

m2
t

s

)]

+
∑

j

[

B
(1)
j +D

(1)
j − A

(1)
j ln

(

m2
t

s

)]

, (20)

where ti stands for t−m2
t or u−m2

t , while Ac is defined by

Ac = tr
(

H(0)Γ
(1) †
S S(0) +H(0)S(0)Γ

(1)
S

)

. (21)
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p+ k p

k → 0

Figure 1: Eikonal diagram for soft-gluon emission from a quark.

The NNLO soft-gluon corrections from the expansion of the resummed cross section are

σ̂(2) = σBα2
s(µR)

π2







1

2
c23D3(s4) +





3

2
c3c2 −

β0

4
c3 +

∑

j

β0

8
A

(1)
j



D2(s4) + · · ·






+
αdαs+2
s (µR)

π2

{

3

2
c3A

cD2(s4) + · · ·
}

(22)

where for brevity we do not show further subleading terms.
The N3LO soft-gluon corrections from the expansion of the resummed cross section are

σ̂(3) = σBα
3
s(µR)

π3







1

8
c33D5(s4) +





5

8
c23 c2 −

5

24
c23 β0 +

5

48
c3β0

∑

j

A
(1)
j



D4(s4) + · · ·






+
αdαs+3
s (µR)

π3

{

5

8
c23A

c D4(s4) + · · ·
}

(23)

where, again for brevity, we do not show further subleading terms.
Results for PIM kinematics are analogous: we replace Dk(s4) by Dk(1− z) and drop terms

involving the ti variables in the above expressions.

3 Soft anomalous dimensions in top-pair production

3.1 Cusp anomalous dimension

The Feynman rules for diagrams with soft gluon emission simplify in the eikonal approximation
(see Fig. 1), as

ū(p) (−igsT
c
F ) γ

µ i(p/+ k/+m)

(p + k)2 −m2 + iǫ

→ ū(p) gsT
c
F γµ p/+m

2p · k + iǫ
= ū(p) gsT

c
F

vµ

v · k + iǫ
(24)

where ū is a Dirac spinor, T c
F are the generators of SU(3), and pµ = (

√
s/2)vµ.
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(a) (b)

Figure 2: One-loop vertex (left) and self-energy (right) eikonal diagrams for the cusp anomalous
dimension.

(a) (b) (c)

(d) (e) (f)

Figure 3: Two-loop vertex diagrams for the cusp anomalous dimension.

We begin with the massive cusp anomalous dimension [35], which is the simplest soft anoma-
lous dimension and an essential component of calculations for top-quark production. Calcula-
tions can be performed in momentum space and in Feynman gauge, although other choices are
possible.

The one-loop diagrams for the cusp anomalous dimension, with eikonal lines representing
the top and the antitop quarks, are shown in Fig. 2. The left graph (a) is the one-loop vertex
correction, while the graph on the right (b) shows the one-loop top and antitop self-energy
diagrams.

The one-loop cusp anomalous dimension, Γ(1)
cusp, is found from the coefficient of the ultraviolet

pole of the one-loop diagrams [35]:

Γ(1)
cusp = CF

[

−(1 + β2)

2β
ln

(

1− β

1 + β

)

− 1

]

(25)

where, as before, β =
√

1− 4m2
t/s.

In terms of the cusp angle θ [100], where θ = cosh−1(vi · vj/
√

v2i v
2
j ) = ln[(1+ β)/(1− β)], or

β = tanh(θ/2), we can rewrite the one-loop expression as

Γ(1)
cusp = CF (θ coth θ − 1) . (26)
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Figure 4: Two-loop top-quark self-energy graphs.
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Figure 5: Lowest-order diagrams for the qq̄ → tt̄ channel (left diagram) and the gg → tt̄ channel
(right three diagrams).

At two loops, the vertex-correction graphs for the cusp anomalous dimension are shown
in Fig. 3 while the top-quark self-energy graphs are shown in Fig. 4. The grey blobs in the
diagrams represent quark, gluon, and ghost loops.

With the inclusion of counterterms and after multiplying with the relevant color factors,
the two-loop cusp anomalous dimension, as determined from the ultraviolet poles, is [35]:

Γ(2)
cusp =

K

2
Γ(1)
cusp + CFCA

{

1

2
+

ζ2
2
+

θ2

2

− 1

2
coth2 θ

[

ζ3 − ζ2θ −
θ3

3
− θ Li2

(

e−2θ
)

− Li3
(

e−2θ
)

]

− 1

2
coth θ

[

ζ2 + ζ2θ + θ2 +
θ3

3
+ 2 θ ln

(

1− e−2θ
)

− Li2
(

e−2θ
)

]}

(27)

where ζ3 = 1.2020569 · · ·.
An excellent approximation to the complete two-loop result that is valid for all β is given

by [35]:

Γ(2)
cusp approx =

K

2
Γ(1)
cusp + CFCA

(

1− 2

3
ζ2

)

β2 . (28)

The complete three-loop result Γ(3)
cusp is very long [101, 102]. A very simple but excellent

numerical approximation, for nf = 5, that is valid for all β is given by [102]

Γ(3)
cusp approx = 2.80322 Γ(1)

cusp + 0.09221 β2 . (29)

3.2 Soft anomalous dimension matrices for tt̄ production

The top-antitop pair production partonic processes at lowest order are

q(p1) + q̄(p2) → t(p3) + t̄(p4) (30)
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and
g(p1) + g(p2) → t(p3) + t̄(p4) . (31)

The diagrams for these processes are shown in Fig. 5. We define s = (p1 + p2)
2, t1 =

(p1 − p3)
2 −m2

t , and u1 = (p2 − p3)
2 −m2

t .
Next, we present the one-loop and two-loop results for the soft anomalous matrices for these

partonic processes. The soft anomalous dimension matrix for q(p1) + q̄(p2) → t(p3) + t̄(p4) in
a color tensor basis of s-channel singlet and octet exchange,

c1 = δ12δ34 , c2 = T c
F 21 T

c
F 34 , (32)

can be written as

Γqq̄→tt̄
S =

[

Γqq̄
11 Γqq̄

12

Γqq̄
21 Γqq̄

22

]

. (33)

At one loop we have [13, 17, 60]

Γ
qq̄ (1)
11 = Γ(1)

cusp

Γ
qq̄ (1)
12 =

CF

CA

ln
(

t1
u1

)

Γ
qq̄ (1)
21 = 2 ln

(

t1
u1

)

Γ
qq̄ (1)
22 =

(

1− CA

2CF

)

Γ(1)
cusp + 4CF ln

(

t1
u1

)

− CA

2

[

1 + ln

(

sm2
t t

2
1

u4
1

)]

. (34)

At two loops we have [49, 60]

Γ
qq̄ (2)
11 = Γ(2)

cusp

Γ
qq̄ (2)
12 =

(

K

2
− CA

2
N2l

)

Γ
qq̄ (1)
12

Γ
qq̄ (2)
21 =

(

K

2
+

CA

2
N2l

)

Γ
qq̄ (1)
21

Γ
qq̄ (2)
22 =

K

2
Γ
qq̄ (1)
22 +

(

1− CA

2CF

)(

Γ(2)
cusp −

K

2
Γ(1)
cusp

)

. (35)

Here N2l is given by

N2l =
θ2

2
− 1

2
coth θ

[

θ2 + 2 θ ln
(

1− e−2θ
)

− Li2
(

e−2θ
)]

. (36)

The soft anomalous dimension matrix for g(p1) + g(p2) → t(p3) + t̄(p4) in a color tensor
basis

c1 = δ12 δ34, c2 = d12c T c
34, c3 = if 12c T c

34 (37)

where d and f are the totally symmetric and antisymmetric SU(3) tensors, is

Γgg→tt̄
S =











Γgg
11 0 Γgg

13

0 Γgg
22 Γgg

23

Γgg
31 Γgg

32 Γgg
22











. (38)
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At one loop we have [17, 60]

Γ
gg (1)
11 = Γ(1)

cusp

Γ
gg (1)
13 = ln

(

t1
u1

)

Γ
gg (1)
31 = 2 ln

(

t1
u1

)

Γ
gg (1)
22 =

(

1− CA

2CF

)

Γ(1)
cusp −

CA

2

[

1 + ln

(

sm2
t

t1u1

)]

Γ
gg (1)
23 =

CA

2
ln
(

t1
u1

)

Γ
gg (1)
32 =

(N2
c − 4)

2Nc
ln
(

t1
u1

)

(39)

At two loops we find [49, 60]

Γ
gg (2)
11 = Γ(2)

cusp

Γ
gg (2)
13 =

(

K

2
− CA

2
N2l

)

Γ
gg (1)
13

Γ
gg (2)
31 =

(

K

2
+

CA

2
N2l

)

Γ
gg (1)
31

Γ
gg (2)
22 =

K

2
Γ
gg (1)
22 +

(

1− CA

2CF

)(

Γ(2)
cusp −

K

2
Γ(1)
cusp

)

Γ
gg (2)
23 =

K

2
Γ
gg (1)
23

Γ
gg (2)
32 =

K

2
Γ
gg (1)
32 (40)

4 Top-antitop pair production

4.1 Total cross sections for tt̄ production

We begin our presentation of numerical results with the total cross section for top-antitop pair
production. The total hadronic cross section is calculated by integrating over the convolution
of the double-differential partonic cross section with the parton distribution functions φ.

We denote the NLO soft-gluon corrections from the expansion of the NNLL resummed cross
section as approximate NLO (aNLO) corrections. Similarly the NNLO soft-gluon corrections
are denoted as approximate NNLO (aNNLO) corrections, and the N3LO soft-gluon corrections
are denoted as approximate N3LO (aN3LO) corrections. The aNLO and aNNLO corrections
are extremely good approximations to the exact NLO and NNLO results, respectively, for total
cross sections as well as top-quark differential distributions at all Tevatron and LHC energies
(see e.g. the discussion in Ref. 60). The best aN3LO prediction is given by the sum of the
NNLO cross section and the aN3LO soft-gluon corrections.
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Collider Energy Cross section ± scale ± pdf
1.8 TeV pp̄ 6.130+0.076

−0.233
+0.179
−0.160

1.96 TeV pp̄ 7.876+0.096
−0.293

+0.224
−0.203

5.02 TeV pp 71.3+2.2
−3.3

+1.9
−2.8

7 TeV pp 183.0+5.4
−6.9

+4.0
−5.6

8 TeV pp 260.1+7.4
−8.6

+5.3
−7.3

13 TeV pp 842.5+25.3
−16.9

+13.7
−17.7

14 TeV pp 995.0+29.7
−19.0

+15.7
−20.2

Table 1: aN3LO top-antitop production cross sections [61] with mt = 172.5 GeV at LHC pp
and Tevatron pp̄ collider energies.

A comparison of various approximate predictions using higher-order soft-gluon corrections,
all made before the exact NNLO cross section was known, is shown in Fig. 6, all with the same
choice of parameters and MSTW2008 [103] pdf, at 1.96 TeV Tevatron energy and at 7, 8, and
14 TeV LHC energies. Moreover, exact NLO and NNLO results for the total cross sections are
also shown on the plot. We observe the success or lack thereof of the various predictions in
predicting the exact NNLO result.

Ref. [49] uses the QCD moment-space resummation formalism for the double-differential
cross section. Ref. [47] uses QCD moment-space resummation with absolute threshold for
the total-only cross section. Ref. [44] uses the SCET resummation formalism for the double-
differential cross section, while Ref. [54] uses SCET resummation with absolute threshold for the
total-only cross section. Lastly, Ref. [55] uses QCD moment-space resummation with absolute
threshold for the total-only cross section.

The result in Ref. [49] is very close to the exact NNLO [88] result: the central values and
the scale uncertainty are nearly identical, for all collider energies, with less than 1% difference
between approximate and exact cross sections. This was expected from the comparison of
approximate NNLO results in different kinematics in Ref. [27] (see also the discussions in [49]
and [60]).

In Fig. 7 we display theoretical predictions at aN3LO [61] for the total cross section as a
function of top-quark mass at the LHC and the Tevatron. We use MMHT2014 [104] NNLO pdf
but note that the results with CT14 [105] and NNPDF [106] pdf are very similar. We compare
the aN3LO results with data from the LHC at 5.02 TeV [107], 7 TeV [108,109], 8 TeV [109,110],
and 13 TeV [111, 112], and from the Tevatron at 1.8 TeV [113, 114] and 1.96 TeV [115]. We
find superb agreement between the theoretical predictions and the data.

In Table 1 we present the aN3LO cross sections [61] for tt̄ production. The central result at
each energy is with µF = µR = mt, the first uncertainty is from independent variation of µF

and µR over the range mt/2 to 2mt, and the second uncertainty is from the MMHT2014 [104]
NNLO pdf.
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Figure 6: Theoretical predictions with soft-gluon corrections [47, 49, 52, 54, 55] from 2010 and
2011 compared to NLO and NNLO results for Tevatron and LHC energies.

4.2 Top-quark pT and rapidity distributions in tt̄ production

We continue with top quark differential distributions in tt̄ production. We present theoretical
results for the top-quark transverse momentum and rapidity distributions at Tevatron and LHC
energies.

The aN3LO top-quark pT distributions [64], with scales µ = mt/2, mt, and 2mt, and mt =
172.5 GeV, are displayed in Fig. 8 at 7, 8, 13, and 14 TeV LHC energies.

The left plot in Fig. 9 shows the aN3LO top-quark normalized pT distribution, (1/σ)dσ/dpT ,
at the LHC compared to CMS [116] data at 13 TeV energy. Two different choices of scale are

used, µ = mt and µ = mT , where mT =
√

p2T +m2
t . There is excellent agreement with data. In

the right plot of Fig. 9, the aN3LO top-quark normalized pT distribution at 8 TeV LHC energy
with scale mt and mT is compared to ATLAS [117] data, again with excellent agreement. The
high-pT region is highlighted in the inset plots.

Figure 10 shows the aN3LO top-quark normalized pT distribution at the LHC compared to
CMS [118] data at 8 TeV energy. There is excellent agreement with data in both the dilepton
and lepton+jets channels.

Figure 11 shows the aN3LO boosted-top quark pT distribution at the LHC compared to
ATLAS [119] and CMS [120] data at 8 TeV energy. There is excellent agreement with the data.

The aN3LO top-quark normalized pT distribution at 7 TeV LHC energy is shown in Fig.
12 and compared with CMS [121] data in the dilepton and lepton+jets channels. We note the
excellent agreement of theory with data.

In the left plot of Fig. 13, the aN3LO top-quark normalized pT distribution at 7 TeV LHC
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Figure 7: The aN3LO [61] top-antitop pair total cross section, with theoretical uncertainties,
as a function of LHC energy, compared with CMS data at 5.02 TeV [107] and with ATLAS
and CMS data at 7 TeV [108, 109], 8 TeV [109, 110], and 13 TeV [111, 112] LHC energies. The
inset plot shows the aN3LO cross section at Tevatron energies compared with CDF [113] and
D0 [114] data at 1.8 TeV, and CDF&D0 combination [115] at 1.96 TeV.
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Figure 8: The aN3LO [64] top-quark pT distributions at 7, 8, 13, and 14 TeV LHC energies.
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Figure 9: The aN3LO top-quark normalized pT distribution (left) at 13 TeV LHC energy
compared with CMS [116] data and (right) at 8 TeV energy compared with ATLAS [117]
lepton+jets data.
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Figure 10: The aN3LO top-quark normalized pT distribution at 8 TeV LHC energy compared
with CMS [118] dilepton (left) and lepton+jets (right) data.
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Figure 11: The aN3LO top-quark pT distribution at 8 TeV LHC energy compared with ATLAS
[119] (left) and CMS [120] (right) data.
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Figure 12: The aN3LO top-quark normalized pT distribution at 7 TeV LHC energy compared
with CMS [121] dilepton (left) and lepton+jets (right) data.
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Figure 13: (Left) The aN3LO top-quark normalized pT distribution at 7 TeV LHC energy
compared with ATLAS [122] lepton+jets data. (Right) The aN3LO top-quark pT distribution
at 1.96 TeV Tevatron energy compared with data from D0 [123].
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Figure 14: The aN3LO [64] top-quark rapidity distributions at 7, 8, 13, and 14 TeV LHC
energies.

energy is compared to ATLAS [122] data. The right plot of Fig. 13 displays the aN3LO top
quark pT distribution at 1.96 TeV Tevatron energy. Excellent agreement of the aN3LO results
with D0 data [123] can be seen, including the high-pT region shown in the inset.

The aN3LO top-quark rapidity distributions at 7, 8, 13, and 14 TeV LHC energies are
displayed in Fig. 14 with scale choices µ = mt/2, mt, and 2mt.

The aN3LO top-quark normalized rapidity distribution, (1/σ)dσ/dY , at 13 TeV LHC energy
is shown in the left plot of Fig. 15 and compared with CMS [116] data. In the right plot of Fig.
15, the aN3LO top-quark normalized absolute value rapidity distribution at 8 TeV LHC energy
is compared to ATLAS [117] data. We find excellent agreement between theory and data in
both cases.

The aN3LO top-quark normalized rapidity distribution at 8 TeV LHC energy is shown in
Fig. 16 and compared with CMS [118] dilepton and lepton+jets data, again with excellent
agreement.

The aN3LO top-quark normalized rapidity distribution at 7 TeV LHC energy is shown in
Fig. 17 and compared with CMS [121] dilepton and lepton+jets data. We again note the
excellent agreement between theory and data.

The aN3LO top-quark rapidity distribution has been calculated for 1.96 TeV Tevatron
energy as shown in the left plot in Fig. 18, and it is in very good agreement with data from
D0 [123].
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Figure 15: (Left) The aN3LO top-quark normalized rapidity distribution at 13 TeV LHC energy
compared with CMS data [116]. (Right) The aN3LO top-quark normalized absolute value
rapidity distribution at 8 TeV LHC energy compared with ATLAS [117] data.
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Figure 16: The aN3LO top-quark normalized rapidity distribution at 8 TeV LHC energy com-
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Figure 17: The aN3LO top-quark normalized rapidity distribution at 7 TeV LHC energy com-
pared with CMS [121] dilepton (left) and lepton+jets (right) data.
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Figure 19: Lowest-order diagrams for single-top production in the t-channel (left diagram),
s-channel (second from left), and in tW production (right two diagrams).

4.3 Top-quark forward-backward asymmetry

The top-quark forward-backward asymmetry is defined by

AFB =
σ(Y > 0)− σ(Y < 0)

σ(Y > 0) + σ(Y < 0)
. (41)

The asymmetry is very significant at the Tevatron. In addition to QCD corrections, electroweak
corrections are important for this asymmetry [124–127] (see also Ref. [128] for rapidity distri-
butions at the LHC). The theoretical result at aN3LO and including electroweak corrections
for 1.96 TeV Tevatron energy is [65] AFB = 0.100± 0.006 which is in agreement with the CDF
and D0 combination [129] of 0.128± 0.025. The aN3LO differential AFB is plotted in the right
plot of Fig. 18 and compared with D0 [130] and CDF [131] data.

5 Single-top production

Collider t-channel t-channel t-channel s-channel s-channel s-channel tW−

Energy t t̄ t and t̄ t t̄ t and t̄
1.96 TeV pp̄ 1.088 1.088 2.176 0.52 0.52 1.04 0.102
7 TeV pp 43.9 23.7 67.6 3.21 1.56 4.77 8.5
8 TeV pp 57.5 31.7 89.2 3.86 1.96 5.82 12.0
13 TeV pp 139.6 84.0 223.6 7.29 4.20 11.49 38.1
14 TeV pp 158.3 96.1 254.3 7.98 4.68 12.66 44.8

Table 2: aNNLO t-channel [73] and s-channel [70] single-top, single-antitop, and combined cross
sections, and aN3LO tW− [77] cross sections with mt = 172.5 GeV at LHC pp and Tevatron
pp̄ collider energies.

Single-top-quark production was first observed at the Tevatron in 2009 [3,4]. The single-top
partonic processes at lowest order are shown in Fig. 19.

The t-channel partonic processes are of the form qb → q′t and q̄b → q̄′t and are numerically
the largest among single-top processes at Tevatron and LHC energies. The s-channel partonic
processes are of the form qq̄′ → b̄t and are numerically second largest at the Tevatron and the
smallest at the LHC among single-top processes. The associated tW production proceeds via
bg → tW− and is negligible at the Tevatron but second largest numerically among single-top
processes at the LHC.
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Table 2 summarizes the central values of the cross sections for the various single-top channels
at LHC and Tevatron energies.

5.1 t-channel production

We start with single-top production in the t-channel.
The soft anomalous dimension matrix for t-channel single-top production is a 2× 2 matrix,

and it has been calculated at one loop in Refs. 68,73 and at two loops in Ref. 73. The elements
of this matrix are given at one-loop by [68, 73]

Γ
t (1)
S 11 = CF

[

ln

(

t(t−m2
t )

mts3/2

)

− 1

2

]

Γ
t (1)
S 12 =

CF

2N
ln

(

u(u−m2
t )

s(s−m2
t )

)

Γ
t (1)
S 21 = ln

(

u(u−m2
t )

s(s−m2
t )

)

Γ
t (1)
S 22 = CF ln

(

s−m2
t

mt

√
s

)

− 1

2N
ln

(

t(t−m2
t )

s(s−m2
t )

)

+
(N2 − 2)

2N
ln

(

u(u−m2
t )

s(s−m2
t )

)

− CF

2

(42)

At two loops, the first element of this matrix is given by [73]

Γ
t (2)
S 11 =

K

2
Γ
t (1)
S 11 + CFCA

(1− ζ3)

4
. (43)

In Figure 20 we plot the aNNLO t-channel single-top and single-antitop cross sections, and
their sum, with mt = 172.5 GeV with theoretical uncertainty from scale variation and the pdf
error. Excellent agreement is found with D0 and CDF combination [132] at 1.96 TeV energy,
and with CMS [133, 135, 138] and ATLAS [134, 136, 137] results at 7, 8, and 13 TeV energies.

The theoretical ratio σ(t)/σ(t̄) = 1.85+0.10
−0.08 at 7 TeV compares well with the ATLAS [134]

result of 2.04 ± 0.18. The theoretical ratio σ(t)/σ(t̄) = 1.81+0.10
−0.07 at 8 TeV compares well with

the ATLAS [136] result of 1.72 ± 0.09 and the CMS [135] result of 1.95 ± 0.10 ± 0.19. The
theoretical ratio for the total t-channel cross section σ(8 TeV)/σ(7 TeV)=1.32+0.07

−0.05 compares
well with the CMS [135] result of 1.24±0.08±0.12. The theoretical ratio σ(t)/σ(t̄) = 1.66+0.08

−0.06

at 13 TeV is in agreement with the ATLAS [137] result of 1.72 ± 0.09 ± 0.18 and the CMS
result [138] of 1.81± 0.18± 0.15.

In addition to the total cross section, the top-quark pT distribution in t-channel production
is of great interest. Figure 21 shows the top (left) and antitop (right) aNNLO pT distributions
in t-channel production at 7 TeV LHC energy together with data from ATLAS [134].

Figure 22 shows the top (left) and antitop (right) aNNLO normalized pT distributions in
t-channel production at 8 TeV LHC energy. We find very good agreement between theory and
data from ATLAS [136] for both distributions.

The left plot of Fig. 23 shows the top-quark aNNLO normalized pT distribution in t-
channel production at 8 TeV LHC energy compared to CMS [139] data. We note the very good
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Figure 20: Single-top aNNLO production cross sections in the t-channel compared with (inset)
CDF and D0 combination data at 1.96 TeV [132], and with ATLAS and CMS data at 7
TeV [133, 134], 8 TeV [135, 136], and 13 TeV [137, 138].
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Figure 21: The aNNLO top-quark (left) and antitop (right) pT distributions in t-channel pro-
duction at 7 TeV compared to ATLAS [134] data.
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Figure 22: The aNNLO top-quark (left) and antitop (right) normalized pT distributions in
t-channel production at 8 TeV compared to ATLAS [136] data.
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Figure 23: (Left) The aNNLO top-quark normalized pT distribution in t-channel production
at 8 TeV compared to CMS [139] data. (Right) The aNNLO top plus antitop normalized pT
distribution in t-channel production at 13 TeV compared to CMS [140] data.
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agreement between theory and data. The plot on the right of Fig. 23 shows the top plus antitop
aNNLO normalized pT distribution in t-channel production at 13 TeV LHC energy compared
to CMS [140] data.

5.2 s-channel production

We continue with single-top production in the s-channel.
The soft anomalous dimension matrix for this process has been calculated at one loop [68,70]

and at two loops [70]. The 2×2 matrix for s-channel single-top production at one loop is [68,70]
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(44)

The first element of this 2× 2 matrix at two loops is [70]

Γ
s (2)
S 11 =

K

2
Γ
s (1)
S 11 + CFCA

(1− ζ3)

4
. (45)

Figure 24 shows the aNNLO cross sections for s-channel production with theoretical un-
certainty from scale variation and pdf error. Results are shown for single-top production,
single-antitop production, and their sum. Excellent agreement is found with D0 and CDF
combination [144], CMS [142], and ATLAS [143] results.

5.3 tW production

We continue with the associated production of a top quark with a W boson. The cross section
for t̄W+ production is identical to that for tW−.

The soft anomalous dimension for bg → tW− is given at one loop by [68, 71]

Γ
tW (1)
S = CF

[

ln

(

m2
t − t

mt

√
s

)

− 1

2

]

+
CA

2
ln

(

m2
t − u

m2
t − t

)

(46)

and at two loops by [71]

Γ
tW (2)
S =

K

2
Γ
tW (1)
S + CFCA

(1− ζ3)

4
. (47)

Fig. 25 shows the total tW aN3LO [77] cross section (sum of tW− and t̄W+) as a function
of LHC energy. Excellent agreement is found with data from ATLAS [145] and CMS [146] at
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Figure 24: Single-top aNNLO production cross sections in the s-channel compared to ATLAS
and CMS data at 7 TeV [141,142] and 8 TeV [142,143], and (inset) to CDF and D0 combination
data [144] at 1.96 TeV.
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Figure 25: Single-top aN3LO production cross sections for tW production compared to ATLAS
and CMS data at 7 TeV [145, 146], 8 TeV [147], and 13 TeV [148, 149].
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Figure 26: Top-quark pT (left) and rapidity (right) aN3LO distributions in tW− production.
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Figure 27: Lowest-order diagrams for the associated production of a top quark with a charged
Higgs boson.

7 TeV, an ATLAS/CMS combination at 8 TeV [147], and ATLAS [148] and CMS [149] at 13
TeV.

Figure 26 displays the aN3LO [77] top-quark pT and rapidity distributions in tW− produc-
tion at LHC energies.

6 Top-quark production in models of new physics

In addition to the various Standard-Model processes for top-quark production, some of which
we studied above, other possibilities include top production in association with particles in
models of new physics, or top production via top-quark anomalous couplings. We consider
some of these possibilities below.

6.1 Associated production of a top quark with a charged Higgs bo-

son

We first consider the production of a top quark in association with a charged Higgs boson
[71, 80, 83]. Charged Higgs bosons appear in the Minimal Supersymmetric Standard Model
(MSSM) and other two-Higgs doublet models. The lowest-order diagrams for this process
are shown in Fig. 27. The soft anomalous dimension for this process is the same as for tW
production.
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Figure 28: Total cross sections (left) and normalized top-quark pT distributions (right) at
aNNLO for charged-Higgs production in association with a top quark.
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Figure 29: Normalized aNNLO top-quark rapidity distributions (left) and the corresponding
K-factors (right) for charged-Higgs production in association with a top quark.

The left plot in Fig. 28 shows the aNNLO cross section for tH− production in the MSSM,
with tanβ = 10, at LHC energies as a function of charged-Higgs mass. The aNNLO corrections
increase the NLO cross section significantly, with the particular value of the increase depending
on the charged-Higgs mass. The plot on the right in Fig. 28 shows the aNNLO normalized
top-quark pT distributions in tH− production for a charged-Higgs mass of 300 GeV.

The left plot of Fig. 29 shows the aNNLO top-quark rapidity distributions in tH− produc-
tion for a charged-Higgs mass of 800 GeV at LHC energies. The plot on the right in Fig. 29
shows the corresponding K factors, which are very considerable, especially at large rapidity.

6.2 Associated production of a top quark with a Z boson via anoma-

lous couplings

An interesting process that involves top-quark anomalous couplings is the associated production
of a top quark with a Z boson. While tZ production can proceed via Standard Model processes
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Figure 30: Lowest-order diagrams for the associated production of a top quark with a Z boson
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Figure 31: Total cross sections (left) and top-quark pT distributions (right) at aNNLO for tZ
production via anomalous couplings.

involving an additional quark in the final state, it is possible to produce a tZ final state without
any other particles in models with anomalous couplings [79,84]. The lowest-order diagrams are
shown in Fig. 30.

An effective Lagrangian that includes an anomalous coupling of a t, q pair to a Z boson is

∆Leff =
1

Λ
κtqZ e t̄ σµν q F

µν
Z + h.c., (48)

where κtqZ is the anomalous t-q-Z coupling with q an up or charm quark, F µν
Z is the Z-boson

field tensor, σµν = (i/2)(γµγν − γνγµ) with Dirac matrices γµ, and Λ is an effective scale which
we take to be the top-quark mass.

Soft-gluon corrections have been calculated at aNNLO in Ref. [84]. These soft corrections
are important, and in fact at NLO they approximate the exact NLO [150] results remarkably
well for both gu → tZ and gc → tZ. The aNNLO corrections provide additional enhancements.

The left plot of Fig. 31 shows the aNNLO total cross sections for gu → tZ with κtuZ = 0.01
at 7, 8, 13, and 14 TeV LHC energies as functions of the top-quark mass, with scales set equal
to the top-quark mass. The inset plot shows the aNNLO/NLO K-factors at the various LHC
energies. The aNNLO corrections increase the NLO result significantly at all LHC energies.

The right plot of Fig. 31 shows the aNNLO top-quark pT distributions, dσ/dpT , at 7, 8, 13,
and 14 TeV LHC energies with mt = 173.3 GeV and κtuZ = 0.01.

29



6.3 Other top-quark production processes via anomalous couplings

In addition to tZ production discussed in the previous subsection, top quarks can also be
produced in association with Z ′ or W ′ bosons [151] (see Ref. [152] for models of such particles).
Soft-gluon corrections are significant for such processes [151].

The production of top quarks with photons, gq → tγ, via anomalous t-q-γ couplings, with q
an up or charm quark, at Tevatron energy was studied in Ref. [79]. The soft-gluon corrections
were found to be significant. The corrections are also large at LHC energies [153].

The process eu → et in electron-proton collisions via anomalous t-u-γ coupling was studied
in Ref. [78]. The processes eq → et, with q an up or charm quark, via anomalous t-q-γ and t-q-Z
couplings, were studied in Ref. [79]. The soft-gluon corrections were found to be important.

Same-sign top-quark production, qq → tt, with q an up or charm quark, via anomalous
t-q-γ and t-q-Z couplings, was studied in Ref. [79]. Numerical results were given for Tevatron
energy [79].

The process gu → tg via anomalous t-u-g couplings was studied in detail in Ref. [81]. The
soft-gluon corrections were found to be substantial at LHC energies.

7 Summary

In this review, I have discussed soft-gluon corrections for top-quark production in hadronic
collisions. I have presented the resummation of soft-gluon contributions in various top-quark
processes through NNLL accuracy via two-loop calculations of soft anomalous dimension ma-
trices.

N3LO approximate results with soft-gluon corrections for the tt̄ production cross section, and
the top-quark differential distributions in transverse momentum and rapidity, are in excellent
agreement with data from the LHC and the Tevatron. Single-top cross sections and differential
distributions have been presented in the t-channel and s-channel, and in tW production, and
they are also in excellent agreement with collider data.

Top-quark production in association with charged-Higgs bosons or with anomalous couplings
in models of new physics has also been discussed. Soft-gluon corrections are very significant
for all top-quark production processes, and they reduce the theoretical errors.
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