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Renormalization group evolution of collinear and
infrared divergences

Nikolaos Kidonakis

Kennesaw State University, Physics #1202, Kennesaw, GA 30144, USA

Abstract

I discuss collinear and infrared divergences in QCD cross sections with massless and

massive final-state particles. I present the two-loop renormalization group evolution and

resummation in terms of anomalous dimensions, and I show specific results for a variety

of QCD hard-scattering processes.

RESUMMATION OF COLLINEAR AND SOFT CORRECTIONS

Soft-gluon corrections arise in scattering cross sections from incomplete cancellations of in-
frared divergences in virtual diagrams and real diagrams with low-energy (soft) gluons. At
nth order in the perturbative series, these soft corrections are of the form [(lnk(s4/M

2))/s4]+
with M a hard scale, k ≤ 2n − 1 and s4 the kinematical distance from threshold. The lead-
ing (double) logarithms arise from collinear and soft radiation. Also purely collinear terms
(1/M2) lnk(s4/M

2) appear in the cross section.
Soft-gluon corrections are dominant near threshold and they can be shown to exponentiate,

so these corrections can be resummed. Resummation follows from factorization properties of
the cross section and renormalization group evolution (RGE) [1, 2] (for further recent studies see
Refs. [3-14]). At next-to-leading-logarithm (NLL) accuracy this requires one-loop calculations
in the eikonal approximation. Recently results have been derived at next-to-NLL (NNLL),
with the completion of two-loop calculations for soft anomalous dimensions for processes with
massless and massive partons in various approaches [3,6-14]. Approximate NNLO and higher-
order cross sections have also been derived from the expansion of the resummed cross sections.

The cross section factorizes as σ = (
∏

ψ) HIL SLI (
∏

J), where ψ are functions for the
incoming partons, J are final-state jet functions, H is the hard-scattering function, and S is
the soft-gluon function describing noncollinear soft-gluon emission [2]. We use RGE to evolve
the S function associated with soft-gluon emission

(

µ
∂

∂µ
+ β(gs)

∂

∂gs

)

SLI = −(Γ†
S)LBSBI − SLA(ΓS)AI

where ΓS is the soft anomalous dimension, a matrix in color space and a function of the
kinematical invariants of the process [2].
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Solving the RGE for the soft function and the other functions in the factorized cross section,
we find the following result for the resummed cross section in Mellin moment space, with N
the moment variable,

σ̂res(N) = exp

[

∑

i

Ei(Ni)

]

exp





∑

j

E ′
j(N

′)



 exp

[

∑

i

2
∫

√
s

µF

dµ

µ
γi/i

(

Ñi, µ
)

]

×tr

{

H exp

[

∫

√
s/Ñ ′

√
s

dµ

µ
Γ†
S(µ)

]

S(
√
s/Ñ ′) exp

[

∫

√
s/Ñ ′

√
s

dµ

µ
ΓS(µ)

]}

.

Collinear and soft radiation from the incoming partons is resummed in the exponent

Ei(Ni) =
∫ 1

0
dz
zNi−1 − 1

1− z

{

∫ (1−z)2

1

dλ

λ
Ai (λs) +Di

[

(1− z)2s
]

}

.

Purely collinear terms can be derived by replacing zN−1−1
1−z

by −zN−1 above.
Collinear and soft radiation from outgoing massless quarks and gluons is resummed in the

second exponent

E ′
j(N

′) =
∫ 1

0
dz
zN

′−1 − 1

1− z

{

∫ 1−z

(1−z)2

dλ

λ
Ai (λs) +Bi [(1− z)s] +Di

[

(1− z)2s
]

}

.

The quantities A, B, and D have well-known perturbative expansions in αs. The factorization
scale, µF , dependence in the third exponent is controlled by parton anomalous dimensions
γi/i = −Ai ln Ñi + γi. Noncollinear soft gluon emission is controlled by the process-dependent
soft anomalous dimension ΓS.

We determine ΓS from the coefficients of ultraviolet poles in dimensionally regularized
eikonal diagrams [2,6,11-15]. We perform the calculations in momentum space and Feynman
gauge. Complete two-loop results have been derived for the soft anomalous dimensions for
e+e− → tt̄ [6], tt̄ hadroproduction [13], t-channel [14] and s-channel [11] single top production,
tW− and tH− production [12], and direct photon and W production at large QT . We write

the perturbative series for the soft anomalous dimension ΓS = (αs/π)Γ
(1)
S + (αs/π)

2Γ
(2)
S + · · ·

and determine Γ
(1)
S and Γ

(2)
S for these processes.

TWO-LOOP SOFT ANOMALOUS DIMENSIONS

Top-antitop production in hadron colliders

The soft anomalous dimension matrix for the partonic process qq̄ → tt̄ is a 2 × 2 matrix
[2, 13]

ΓS qq̄ =

[

Γqq̄ 11 Γqq̄ 12

Γqq̄ 21 Γqq̄ 22

]

.
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At one loop, in a singlet-octet color basis, we find

Γ
(1)
qq̄ 11 = −CF [Lβ + 1] Γ

(1)
qq̄ 21 = 2 ln

(

u1
t1

)

Γ
(1)
qq̄ 12 =

CF

CA
ln
(

u1
t1

)

Γ
(1)
qq̄ 22 = CF

[

4 ln
(

u1
t1

)

− Lβ − 1
]

+
CA

2

[

−3 ln
(

u1
t1

)

+ ln
(

t1u1
sm2

)

+ Lβ

]

where Lβ = [(1+β2)/(2β)] ln[(1−β)/(1+β)] with β =
√

1− 4m2/s and m the top quark mass.

At two loops, we find [13]

Γ
(2)
qq̄ 11 =

K

2
Γ
(1)
qq̄ 11 + CFCAMβ Γ

(2)
qq̄ 22 =

K

2
Γ
(1)
qq̄ 22 + CA

(

CF −
CA

2

)

Mβ

Γ
(2)
qq̄ 21 =

K

2
Γ
(1)
qq̄ 21 + CANβ ln

(

u1
t1

)

Γ
(2)
qq̄ 12 =

K

2
Γ
(1)
qq̄ 12 −

CF

2
Nβ ln

(

u1
t1

)

where K is a two-loop constant, Mβ is a part of the two-loop cusp anomalous dimension [6],
and Nβ is a subset of the terms of Mβ.

Similar results have been derived for the gg → tt̄ channel [13].

Single top quark production

We begin with the soft anomalous dimension for t-channel single top production [14]. Here
we show results only for the 11 element of the matrix. At one loop

Γ
(1)
t-ch 11 = CF

[

ln
(−t
s

)

+ ln

(

m2 − t

m
√
s

)

−
1

2

]

.

At two loops [14]

Γ
(2)
t-ch 11 =

K

2
Γ
(1)
t-ch 11 + CFCA

(1− ζ3)

4
.

We continue with the soft anomalous dimension for s-channel single top production [11],
again showing only the 11 matrix element:

Γ
(1)
s-ch 11 = CF

[

ln

(

s−m2

m
√
s

)

−
1

2

]

, Γ
(2)
s-ch 11 =

K

2
Γ
(1)
s-ch 11 + CFCA

(1− ζ3)

4
.

Finally we present the soft anomalous dimension for the associated production of a top
quark with a W− or H−. Relevant two-loop eikonal diagrams are shown in Fig. 1 (there are
also additional top-quark self-energy graphs).

The soft anomalous dimension for bg → tW− (or bg → tH−) is [12]

Γ
(1)
S, tW− = CF

[

ln

(

m2 − t

m
√
s

)

−
1

2

]

+
CA

2
ln

(

m2 − u

m2 − t

)

Γ
(2)
S, tW− =

K

2
Γ
(1)
S, tW− + CFCA

(1− ζ3)

4
.
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Figure 1: Two-loop eikonal diagrams for tW production.

W -boson and direct photon production at large pT

One-loop results for the soft anomalous dimensions for W (same as for direct photon)
production have been known from [15]. Here we also present new two-loop results.

For the process qg →Wq (or qg → γq) the soft anomalous dimension is

Γ
(1)
S, qg→Wq = CF ln

(−u
s

)

+
CA

2
ln
(

t

u

)

, Γ
(2)
S, qg→Wq =

K

2
Γ
(1)
S, qg→Wq .

For the process qq̄ →Wg (or qq̄ → γg) the soft anomalous dimension is

Γ
(1)
S, qq̄→Wg =

CA

2
ln
(

tu

s2

)

, Γ
(2)
S, qq̄→Wg =

K

2
Γ
(1)
S, qq̄→Wg .
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