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of clusters but randomly positioned in
pictures (Fig. 1D, random). Experimental
data indicated that the majority of PS
cluster centroids (72%) were found at a
distance below 300 nm of the DBH cluster
centroids, as opposed to only 33% with
random data (Fig. 1D). The average dis-
tance separating centroids was also highly
increased with random data (431 * 6 nm
compared with 219 = 14 nm with exper-
imental data). These differences between
random calculation and experimental
data are consistent with the idea that PS
translocation occurs at specific sites in the
vicinity of the granule membrane patch
merged with the plasma membrane.

PLSCR-1 protein is linked to the
secretagogue-induced translocation of
PS at the chromaffin cell surface

In theory, the phospholipid asymmetry at
the plasma membrane can be abolished by
phospholipid scramblases (PLSCR). The
PLSCR proteins were originally identified
and cloned based on their scramblase ac-
tivity measured in a reconstituted proteo-
liposome system (Basse et al., 1996).
PLSCR-1 has been implicated as one pro-
tein that might participate in the transbi-
layer redistribution of phospholipids
(Sims and Wiedmer, 2001; Devaux et al.,
2006). Thus, we decided to examine
whether PLSCR-1 might be expressed
in chromaffin tissues and whether
PLSCR-1 might be involved in PS asymmetry disruption. By
RT-PCR and Western blot experiments, we detected the
PLSCR-1 messenger in cultured bovine chromaffin cells and
the PLSCR-1 protein in mouse adrenal glands tissue at the
expected molecular weight of 36 kDa (Fig. 2A).

Because we could not detect endogenous PLSCR-1 by immu-
nofluorescence with the antibodies currently available, we exam-
ined the distribution of exogenously expressed GFP-tagged
PLSCR-1 in chromaffin cells labeled with plasma membrane
(syntaxin-1) or secretory granules (DBH) markers (Fig. 2B).
GFP-PLSCR-1 was mostly detected in cell periphery and to lesser
extent in endomembranes. PLSCR-1 was largely found colocal-
ized with syntaxin-1 but not with DBH, indicating that PLSCR-1
was most likely associated with the plasma membrane and not
with secretory granules.

To assess whether PLSCR-1 is functionally implicated in PS
outward movement during exocytosis, we transfected bovine
chromaftfin cells with cDNAs encoding either wild-type PLSCR-1
or a calcium-insensitive PLSCR-1y,,4,, mutant unable to trigger
PS redistribution (Zhou et al., 1998a). Both constructs were fused
to GFP. Cells were stimulated with a depolarizing K concentra-
tion, and the appearance of PS at the cell surface was detected
with fluorescent annexin-A5 added to the cell incubation solu-
tion. No annexin-A5 binding was observed in nonstimulated
cells, confirming the absence of PS at the outer leaflet of the
plasma membrane in resting conditions (Fig. 3). Annexin-A5
decorated K " -stimulated PLSCR-1-transfected cells as efficiently
as nontransfected cells, indicating that PS was translocated in
response to secretagogue-evoked stimulation. In contrast,

Figure 4.
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Inactive PLSCR-1 does not affect catecholamine and hormone release. A, Representative amperometric recordings
from bovine chromaffin cells expressing EGFP alone (control), GFP-PLSCR-1, or GFP-PLSCR-1p,5,44 Stimulated for 10 s by a local
application of 100 mu K *. B, Average number of spikes after 100 s of recording of control cells (n = 21 cells), cells expressing
PLSCR-1 (n = 28 cells), or PLSCR-1p,544 (n = 17 cells). n.s., Not significant compared with control cells. €, GH release from PC12
cells transfected with pGHSuper and either pEGFP (control), GFP-PLSCR-1, or GFP-PLSCR-1y,,444. Basal release of GH in resting
conditions (white) and GH released in response to a 10 min stimulation with 59 mmK * stimulation (black) were measured. Data
are the mean = SEM; n = 3.

annexin-A>5 staining was drastically inhibited in cells expressing
the Ca**-insensitive PLSCR-1,54, mutant (Fig. 3). Similar re-
sults were obtained when cells were stimulated with 10 um
nicotine (data not shown). Thus, PLSCR-1 activity contrib-
utes to the cell surface exposure of PS that occurs during the
exocytotic process.

Ca® -dependent PLSCR-1 activity is not required for
exocytosis but for secretory granule membrane endocytosis
To investigate the potential involvement of PLSCR-1 in exocyto-
sis, we measured catecholamine release in bovine chromaffin
cells expressing PLSCR-1 or PLSCR-1,,,5,, using carbon fiber
amperometry to monitor real-time single granule exocytosis
(Mosharov and Sulzer, 2005). Figure 4A shows representative
amperometric traces recorded from chromaffin cells expressing
EGFP (control), PLSCR-1, or PLSCR-1p,4,, mutant. Ampero-
metric spikes representing the release of catecholamines from
one single granule were measured over a period of 100 s. We
found that the number of amperometric events was similar in
cells expressing EGFP, PLSCR-1, and PLSCR- 1,44, mutant (Fig.
4B), indicating that altering PLSCR-1 activity did not affect the
number of exocytotic granule fusion events. To further confirm
that PLSCR-1 activity was not linked to exocytosis and protein
secretion, we measured exocytotic release of growth hormone
(GH) from PCI12 cells expressing PLSCR-1 proteins. As illus-
trated in Figure 4C, neither PLSCR-1 nor PLSCR-1p,,5,, mutant
affected the amount of GH secreted in response to high K-
evoked stimulation.
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Figure 5.  Inactive PLSCR-1 inhibits compensatory endocytosis. Bovine chromaffin cells express-
ing PLSCR-1 or PLSCR-1;6,, fused to GFP were stimulated for 10 min with 59 mm K * and then
incubated for 30 min at4°Cin the presence of anti-DBH antibodies in the external medium. Cells were
thenfixed (4, Stimulated) orincubated for an additional 15minina 37°CLocke’s solution to allow DBH
endocytosis and then fixed (C, 15 min chase). Anti-DBH antibodies were revealed with secondary
antibodies coupled to Alexa-555. Representative pictures are shown. *Nontransfected cells. Scale
bars, 5 um. B, Quantitative analysis of DBH-labeled patches density (n = 25 cells). D, Analysis of the
internalization of DBH-positive vesicles by Euclidean distance map. After 15 min chase, DBH uptake
wasreduced by 50%in cells expressing the PLSCR- 1,544 mutant. ***p << 0.001, compared with cells
expressing PLSCR-1 (n = 25 cells). n.s., Not significant.

To probe the function of PLSCR-1-induced translocation of
PS in secretory granule endocytosis, we took advantage of the
anti-DBH antibody internalization assay we have recently de-
scribed (Ceridono et al., 2011). Because granule membrane fu-
sion with the plasma membrane triggers transient accessibility
of DBH (an intraluminal membrane-associated granule protein)
to the extracellular space, exocytotic spots on the chromaffin cell
surface can be visualized by incubating living cells with anti-DBH
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antibodies. Compensatory endocytosis is then measured by fol-
lowing the internalization of the anti-DBH antibodies bound to
the cell surface after exocytosis (for details see Material and Meth-
ods) (Ceridono et al., 2011).

We found that amounts of cell surface DBH patches that ap-
peared upon high-potassium stimulation (Fig. 5A,B) or nico-
tinic stimulation (data not shown) were similar in chromaffin
cells expressing PLSCR-1 or PLSCR-1,,4,4 mutant, confirming
that PLSCR-1 does not play a role in exocytosis. However, when
chase experiments were performed, DBH internalization was re-
duced by ~50% in PLSCR-1,g44 compared with PLSCR-1-
expressing cells: after 15 min, 37.9 * 2.9% of the total DBH was
internalized in PLSCR-1 5,4, expressing cells versus 67.4 = 3.0%
in PLSCR-1-expressing cells (Fig. 5C,D).

Together, these results suggest that calcium-induced
PLSCR-1 activity and the resulting PS redistribution at the
plasma membrane are not required for granule fusion and
exocytosis but are critical for secretory granule membrane
retrieval.

Outward translocation of PS and secretory granule
compensatory endocytosis are abolished in chromaffin cells
from PLSCR-1 knock-out mouse

To get further insight into the function of PLSCR-1 in chromaffin
cell secretion and to circumvent possible drawbacks resulting from
protein overexpression, we adapted the DBH-internalization assay
to cultured mouse chromaffin cells obtained from PLSCR-1 knock-
out mice (PLSCR-1 /7). Immunoblot analysis confirmed the ab-
sence of PLSCR-1 expression in adrenal medulla tissue from PLSCR-
17/~ mouse (Fig. 6A). Ultrastructural images revealed that the
number and the distribution of large dense-core secretory granules
remained unchanged in PLSCR-1-deficient chromaffin cells (Fig.
6B,0).

We first examined PS exit upon K -evoked chromaffin cell
stimulation using annexin-A>5 in extracellular medium. As shown
in Figure 6 D, E, annexin-A5 binding was dramatically reduced in
PLSCR-1/~ compared with WT (PLSCR-1 7Y chromaffin
cells, indicating that PS exit does not occur in the absence of
PLSCR-1. To rule out a possible effect of PLSCR-1 knock-out on
the global lipid metabolism, we measured the total level of
some selected lipids, such as PS and PE, known to be regulated
by PLSCR-1 or cholesterol important for establishing exo-
endocytotic sites (Chasserot-Golaz et al., 2005; Wang et al.,
2010). Therefore, lipidomic analysis on lipid extracts obtained
from WT (PLSCR-1"'%) and PLSCR-1 knock-out mice
(PLSCR-1 /") adrenal medulla was performed using sensitive
liquid chromatography-tandem mass spectrometry (Houjou
etal., 2005; Bang et al., 2007). As shown in Figure 6F, the total
amount of PS, PE, and cholesterol remains unchanged in
PLSCR-1 knock-out mice adrenal medulla compared with
wild-type mice, indicating that the reduction in PS delivery to
the cell surface observed in secretagogue-stimulated
PLSCR-1 "'/~ cells does not result from a reduction in total PS
levels in these cells.

Next, we analyzed secretory granule exocytosis and endocyto-
sis using the anti-DBH antibody internalization assay. Similarly
to bovine chromatftfin cells expressing the inactive PLSCR-1 mu-
tant (Fig. 5), high K "-stimulated PLSCR-1"'" cells exhibited cell
surface DBH patches to a similar extent than wild-type cells (Fig.
7 A, B), indicating that exocytosis is not impaired in the absence of
PLSCR-1 activity. However, DBH chase experiments showed that
compensatory endocytosis was drastically inhibited because after
15 min only 19.7 * 3.7% of the total DBH was internalized in
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PS exit is blocked in chromaffin cells from PLSCR-1 /" mice. 4, Western blot confirming the absence of PLSCR-1 protein in adrenal medulla tissue of PLSCR-1 '~ mouse. B, ,

Representative transmission electron micrographs of chromaffin cells from adult WT (PLSCR-1 /) or PLSCR-1 /"~ mice (B) and quantification of secretory granule density (C). No significant
difference was observed (n = 60). D, Confocal images of mouse chromaffin cells labeled for PS exit. Cells were stimulated with 59 mm K ™ in the presence of fluorescent annexin-A5 and processed
for tyrosine hydroxylase (TH) labeling to identify chromaffin cells. Scale bar, 5 wm. E, Quantification of annexin-A5 mean intensity (left) and mean number of annexin-A5 spots per cell (right) after
stimulation. 25 cells from 3 independent experiments were used. Data are given as mean intensity or mean spot number per cell == SEM. F, Quantification of total levels of cholesterol (Chol), PS, and
PEin the adrenal medulla of wild-type (+/-+) and PLSCR-1knock-out (—/—) mice. Lipid quantification was made by comparison of phospholipid MS and cholesterol MS/MS peak area. Cholesterol
was analyzed by UPLC-atmospheric pressure photon ionization ~-MS/MS with the following transitions: 369.5 > 161, whereas PS and PE were analyzed by UPLC-electrospray ionization-MS. The
mass spectra were acquired using the selected ion recording MS mode to determine parent mass transition.

PLSCR-1"'" cells compared with 56.8 = 2.1% in PLSCR-1*/*
chromaffin cells (Fig. 7C,D). Together, these results reveal that
PLSCR-1 is involved in the transbilayer redistribution of PS that
accompanies secretion and plays an essential function in the
pathway mediating compensatory endocytosis of the secretory
granule membrane.

Compensatory endocytosis is triggered subsequently to the
supply of secretory granule membrane after exocytosis. On the
other hand, constitutive endocytosis continuously recycles re-
ceptors at the plasma membrane, and fluid-phase endocytosis
internalizes fluid from outside the cells. To probe whether
PLSCR-1 might be a general player in endocytotic pathways, we
measured fluorescent-transferrin (Tfn) as well as 3 kDa dextran
internalization using cells cultured from PLSCR-1"'* and
PLSCR-1 "/~ mice. Quantification of transferrin or dextran in-

ternalization in adrenal chromaffin cells (Fig. 8) or skin fibro-
blasts (data not shown) revealed no significant differences
between PLSCR-1"'" and PLSCR-1"/", indicating that
PLSCR-1 is not involved in constitutive or fluid-phase endocyto-
sis. In other words, PLSCR-1 seems to be specifically required for
compensatory endocytosis in secretory cells.

Discussion

New evidence has recently emerged supporting the idea that vesicle/
granule membranes do not intermix with the plasma membrane
after exocytotic fusion in neurons and neuroendocrine cells (Opazo
and Rizzoli, 2010; Opazo et al., 2010; Ceridono et al., 2011). Using
chromaffin cells, we have previously demonstrated that various
transmembrane granule proteins (e.g., dopamine-B-hydroxy-
lase, VMAT?2, phogrin) remain clustered on the cell surface after
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Figure7.  Compensatory endocytosis is impaired in PLSCR-1 "~ mouse chromaffin cells. A, Quantification of exocytosis sites
using anti-DBH antibodies. Cells were stimulated for 10 min with 59 mm K * in the presence of anti-DBH antibodies, fixed, and
processed for anti-DBH staining. Scale bar, 5 wm. B, Mean number of DBH fluorescent spots per cells were determined and
normalized to cell surface. n.s., Not significant compared with PLSCR-1 /™ (n = 25 cells). €, Representative confocal images of
mouse chromaffin cells subjected to anti-DBH internalization assay. Cells were stimulated with 59 mm K™ for 10 min in the
presence of anti-DBH antibodies and maintained for an additional 15 min period in Locke’s solution without antibodies to allow
DBH/anti-DBH uptake. Cells were fixed, permeabilized, and processed for anti-DBH detection using secondary antibody coupled to
Alexa-555 and for tyrosine hydroxylase (TH) staining to identify chromaffin cells. Scale bar, 5 um. D, Euclidean distance map
analysis of anti-DBH positive vesicles. ***p < 0.001, compared with PLSCR-1*/* (n = 25 cells).

full fusion exocytosis and are subsequently internalized through a
compensatory endocytosis process, leading to vesicular struc-
tures, which do not include plasma membrane proteins
(Ceridono etal., 2011). Thus, a tight coupling between calcium-
regulated exocytosis and compensatory endocytosis exists, but
how secretory cells precisely sort granule membrane-associated
proteins after fusion and full collapse and how compensatory
endocytosis is triggered and regulated remain uninvestigated
questions.

Signaling platforms created and maintained in cell mem-
branes by changing the lipid composition and/or asymmetry play
an essential role in many aspects of the cell physiology (Ikeda et
al., 2006). Cell surface exposure of PS during calcium-regulated
secretion has been observed in mast cells (Demo et al., 1999),
PCI2 cells (Vitale et al., 2001; Malacombe et al., 2006), nerve
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terminals (Lee et al., 2000), and chromaf-
fin cells (Ceridono etal., 2011). Moreover,
externalization of PS has been proposed
to regulate various membrane fusion
events, including myotube formation,
sperm capacitation reaction, and micro-
particle release (Bailey and Cullis, 1994;
Gadella and Harrison, 2000; van den
Eijnde et al., 2001; Gonzalez et al., 2009).
Yet, the functional importance of cell sur-
face PS exposure for regulated exocytosis
remains controversial because exocytosis
has been shown to occur both depend-
ently (Kato et al., 2002) or independently
(Acharya et al., 2006) of it.

Using chromaffin cells lacking PLSCR-1
expression or expressing the calcium-
insensitive PLSCR-1y,5,, mutant, we show
here that (1) secretagogue-evoked exocyto-
sis is accompanied by cell surface PS expo-
sure at the close vicinity of the granule
membrane transiently inserted into the
plasma membrane; (2) this secretagogue-
induced PS externalization requires
PLSCR-1; and (3) PLSCR-1 activity and cell
surface exposure of PS play no role in exo-
cytosis but are required for efficient granule
membrane compensatory endocytosis.

n.s.

Spatial segregation of PS redistribution

How can a lipid redistribution and loss of
PS asymmetry be restricted to the periph-
ery of a secretory granule membrane that
just merged with the plasma membrane?
Our results indicate that PS redistribution
is linked to PLSCR-1 activity in chromaffin
cells. However, the subcellular localization
of endogenous PLSCR-1 in adrenal chro-
maffin cells has not been solved. Given its
functional importance in secretory granule
compensatory endocytosis, PLSCR-1 is ex-
pected to localize either at the plasma mem-
brane or at the secretory granule membrane.
In human epithelial cells or fibroblasts,
PLSCR-1 has been localized to the plasma
membrane, the endosomes, and the nucleus
(Zhao et al, 1998a; Sun et al., 2002;
Wiedmer et al., 2003; Talukder et al, 2012).
Accordingly, our data suggest a preferential localization at the
plasma membrane. First, the exogenously expressed PLSCR-1 colo-
calized with the plasma membrane-bound syntaxin-1 and not with
the secretory granule marker, DBH (Fig. 2). Second, by performing
subcellular fractionation from BON cells culture, a human pancre-
atic enterochromaffin cell line (Zhang et al., 1995), we detected the
presence of endogenous PLSCR-1 in fractions enriched in plasma
membrane but not in secretory granules (data not shown). Third,
the spatial analysis of cell surface distribution of PS in stimulated
chromaffin cells demonstrated that PS exit occurs preferentially at
the vicinity but outside the DBH-containing granule membrane
fused with the plasma membrane (Fig. 1). If PLSCR-1 is a plasma
membrane bound protein, why is it activated only at the proximity
of granule fusion sites leading to a patchy externalization of PS? The
calcium dependence of PLSCR-1 may contribute to the spatial dis-

+/+ -/-
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Figure8. Constitutive endocytosis and fluid-phase uptake are notimpairedin PLSCR-1 '~
mouse chromaffin cells. Chromaffin cells were serum starved for 1 h and incubated for 30 minin
the presence of fluorescent transferrin or 3 kDa dextran. Cells were fixed and imaged with
confocal microscope. Scale bar, 5 ,m. The histogram represents the quantification of transfer-
rin and dextran uptake by measuring the mean fluorescent intensity normalized to cell area.
n.s., Not significant.

tribution of its activity. Indeed, PLSCR-1 requires Ca*" for activa-
tion, with an apparent affinity of ~10 um (Stout et al., 1998), and
activation may therefore occur only at short distances of the exocy-
totic hot spots where calcium levels can reach 5-10 uM in stimulated
chromaffin cells (Klingauf and Neher, 1997; Becherer et al., 2003).
Alternatively, we cannot exclude that activation of plasma mem-
brane bound PLSCR-1 may require a granule-associated compo-
nent, and thus restricting its activation to the sites where granules
fuse with the plasma membrane.

Scrambling or not scrambling?

PLSCR-1 was originally proposed to mediate rapid bidirectional
transbilayer movement of phospholipids across the membrane in
a Ca’"-dependent manner and thereby collapse phospholipid
asymmetry (Basse et al., 1996; Devaux et al., 2006). However, the
lipid scrambling activity of PLSCR-1 remains highly controver-
sial. Evidence against a PLSCR-1 phospholipid scrambling activ-
ity is the surface PS exposure observed upon activation of
platelets from PLSCR-1 ~/~ knock-out mice (Zhou et al., 2002).
Yet, compensatory mechanism resulting from expression of
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other PLSCR family proteins or the recently discovered scram-
blase TMEM16F cannot be excluded (Suzuki et al., 2010). Con-
versely, red blood cells from a patient with Scott syndrome
display defective scrambling but show no abnormalities in any of
the PLSCR genes or proteins (Zhou et al., 1998b). Although its
scramblase activity per se is questioned, our data clearly indicate
that PLSCR-1 is required for the secretagogue-induced PS reor-
ganization at the vicinity of the exocytotic sites in the neuroen-
docrine chromaffin cells. In our experimental conditions, the
lack of PLSCR-1 cannot be bypassed by other PLSCR isoforms or
the Ca**-dependent scramblase TMEM16F (Suzuki et al., 2010).
Thus, PLSCR-1 might be implicated in a signaling pathway lead-
ing to a specific PS redistribution, or it might induce during the
secretory granule fusion event a general lipidic reorganization
reflected by the cell surface exposure of PS. Interestingly, in sys-
tematic mapping of protein-protein interaction of the human
proteome, PLSCR-1 has been found to interact with the inositol
hexakisphosphate kinase 2 (IP6K2) (Rual et al., 2005). IP6Ks
generate highly phosphorylated inositol polyphosphate (referred
to as IP7 and IP8). IP6K1, but not IP6K2, modulates exocytotic
activity of B-pancreatic cells. Whether it might be involved in
compensatory endocytosis has not been investigated (Illies et al.,
2007). In any case, the exact nature and the underlying mecha-
nism of the lipid remodelling induced by PLSCR-1 at the inter-
phase between secretory granule and plasma membrane are
challenging questions that remain to be investigated.

PS distribution and compensatory endocytosis
We show here for the first time that secretagogue-induced PS
exposure is a key step for recycling secretory granule membrane
after exocytosis. In secreting chromaffin cells lacking PLSCR-1
activity or expressing the calcium-insensitive PLSCR-1,,544, PS
externalization is blocked, unchanging the exocytotic response
but inhibiting the subsequent compensatory endocytosis. It
seems intriguing that the calcium-insensitive PLSCR-1,,,5,, mu-
tant behaves as a dominant-negative mutant. A possible explana-
tion is that PLSCR proteins form dimers (Rual et al., 2005), as
observed for several proteins containing EF-Hand domains (Yap
et al., 1999). By interacting with endogenous PLSCR-1, the
PLSCR-1}),5,, mutant might prevent proper calcium activation
of PLSCR-1. Interestingly, PLSCR-1 is specifically involved in
compensatory endocytosis in neuroendocrine cells because con-
stitutive endocytotic pathways, such as receptor-mediated endo-
cytosis of transferrin or fluid-phase uptake, are not affected in
PLSCR-1 "'~ mice. Does PLSCR-1 play a role in synaptic vesicle
endocytosis in neurons? The question is worth exploring be-
cause several Ca’"-dependent scramblase proteins, including
PLSCR-1 and TMEMI16F, have been detected in neurons (Rami
et al., 2003; Acharya et al., 2006; Gritli-Linde et al., 2009) and
transbilayer phospholipid redistribution has been associated
with neurotransmitter release (Lee et al., 2000).

How may cell surface PS control compensatory endocytosis?
As previously discussed, externalization of PS may either reflect
the loss of PS asymmetry and/or reveal a profound lipid reorga-
nization or recomposition to create a microdomain. Hence, in
red blood cells, loss of phospholipid asymmetry can modify
membrane mechanical stability (Manno et al., 2002). Moreover,
formation of lipid raft microdomain is necessary for the struc-
tural and spatial organization of the exocytotic machinery, in-
cluding SNARE complex assembly (Chasserot-Golaz et al., 2005;
Salaun et al., 2005; Puri and Roche, 2006). Therefore, a possible
scenario is that a local reorganization of lipids surrounding the
granule membrane transiently inserted within the plasma mem-
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brane might serve as a signal to retain granule components and
preserve the integrity of the granule membrane for compensatory
endocytosis in neuroendocrine cells.

Alternatively, as an anionic phospholipid, PS confers negative
charges, and its redistribution may contribute to the recruitment
of proteins required for compensatory endocytosis by changing
the membrane surface charge (Elliott et al., 2005; Yeung et al.,
2008; Das et al., 2012). For example, modification in PS distribu-
tion has been shown to be critical for the recruitment of the
tyrosine-kinase c-Src during phagosome maturation as well as for
the membrane targeting of Rho GTPases members during cell
polarity establishment (Fairn et al., 2011; Das et al., 2012). More-
over, PS has been shown to directly bind various proteins in-
volved in exocytosis of large dense-core granules, such as
annexin-A2, rabphilin, DOC 2, or synaptotagmin (Stace and
Ktistakis, 2006). Thus, the local decrease in PS concentration at
the inner leaflet of the plasma membrane could represent a signal
to switch from exocytosis to endocytosis, by permitting the re-
lease of exocytotic components and the recruitment of molecules
and specific adaptors dedicated to endocytosis. In line with this
idea, despite no changes in total levels of endocytotic proteins,
such as clathrin, dynamin-2, or B-adaptin in cells lacking
PLSCR-1 (data not shown), our preliminary observations suggest
that clathrin recruitment to the granule membrane transiently
inserted into the plasma membrane, which is required for com-
pensatory endocytosis (Ceridono et al., 2011), is reduced. This
observation merits further investigations to determine the spe-
cific relationship between PS translocation and the recruitment
of compensatory endocytotic machinery.

In conclusion, activation of secretion in neuroendocrine cells
triggers a PLSCR-1-dependent outward translocation of PS
around the exocytotic granule membrane. Although this lipid
reorganization does not regulate the exocytotic process per se, we
show here for the first time that it appears as an essential step for
compensatory endocytosis. Resolving the mechanistic details of
this lipid reorganization and its downstream molecular cascades
to selectively retrieve secretory granule membranes in neuroen-
docrine cells is the next challenging question.
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