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Abstract 
 

 Finding nearest neighbors in large multi-dimensional data has always been one of the 

research interests in data mining field. In this paper, we present our continuous research on 

similarity search problems. Previously we have worked on exploring the meaning of K 

nearest neighbors from a new perspective in PanKNN [20]. It redefines the distances between 

data points and a given query point Q, efficiently and effectively selecting data points which 

are closest to Q. It can be applied in various data mining fields. A large amount of real data 

sets have irrelevant or obstacle information which greatly affects the effectiveness and 

efficiency of finding nearest neighbors for a given query data point. In this paper, we present 

our approach to solving the similarity search problem in the presence of obstacles. We apply 

the concept of obstacle points and process the similarity search problems in a different way. 

This approach can assist to improve the performance of existing data analysis approaches. 

 

 Keywords: K-nearest search, multi-dimensional data, obstacles 

 

1.  Introduction 
 

 Huge amount of data have been generated in many disciplines nowadays. The similarity 

search problem has been studied in the last decade, and many algorithms haves been proposed 

to solve the K nearest neighbor search [15, 19, 2, 14, 11]. We previously proposed PanKNN 

[20] which is a novel technique that explores the meaning of K nearest neighbors from a new 

perspective. It redefines the distances between data points and a given query point Q, and 

selects data points which are closest to Q efficiently and effectively. In this paper, we first 

give a brief introduction about our previous work on PanKNN and discuss the Fuzzy concept; 

then, we propose to use the Fuzzy concept to design OPanKNN algorithm that targets solving 

the nearest neighbors problems in the presence of obstacles. 

 

2.  Related work 
  

 The similarity between two data points used to be based on a similarity function such as 

Euclidean distance which aggregates the difference between each dimension of the two data 
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points in traditional nearest neighbor problems. In those applications, the nearest neighbor 

problems are solved based on the distance between the data point and the query point over a 

fixed set of dimensions (features). However, such approaches only focus on full similarities, 

i.e., the similarity in full data space of the data set. Also early methods [1, 8, 23] suffer from 

the “curse of dimensionality”. In a high dimensional space the data are usually sparse, and 

widely used distance metric such as Euclidean distance may not work well as dimensionality 

goes higher. Recent research [9] shows that in high dimensions nearest neighbor queries 

become unstable: the difference of the distances of farthest and nearest points to some query 

point does not increase as fast as the minimum of the two, thus the distance between two data 

points in high dimensionality is less meaningful. Some approaches [16, 4, 3] are proposed 

targeting partial similarities. However, they have limitations such as the requirement of the 

fixed subset of dimensions, or fixed number of dimensions as the input parameter(s) for the 

algorithms. 

 

 

Figure 1: A Data Set with Obstacles 

 

 There are quite a few approaches designed to detect clusters in the presence of obstacles 

and facilitators. For example, COD CLARANS [6] is modified version of the CLARANS 

[18] partitioning algorithm which performs clustering processes in the presence of obstacles. 

AUTOCLUST+ [13] is version of AUTOCLUST[12] enhanced to handle obstacles, which 

does not require parameters. DBRS+ [25] is derived from DBRS [22], and it handles both 

obstacles and facilitators. 

 However, none of these algorithms considers detecting outliers simultaneously with 

clustering process. In many cases, outliers are as important as clusters, such as credit card 

fraud detection, discovery of criminal activities, discovery of computer intrusion, and etc. 

Analyzing the data distribution with the consideration of obstacles is critical for many data 

sets. For example, figure 1 shows two dimensional data set where there are two curves 

(obstacles) that cut through the data set, separating it into isolated subgroups, some of which 

would have been in the same clusters have these two curves not existed. 

 

3.  Fuzzy Concept 
 

 Various data sets in the real world are not naturally well organized and fuzzy concept can 

be applied to further improve the data analysis approaches. The concept of fuzzy sets was first 
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introduced by Zadeh [24] to represent vagueness. The use of fuzzy set theory is becoming 

popular because it produces not only crisp decision when necessary but also corresponding 

degree of membership. Usually, membership functions are defined based on a distance 

function, such that membership degrees express proximities of entities to cluster centers. In 

conventional clustering, sample is either assigned to or not assigned to group. Assigning each 

data point to exactly one cluster often causes problems, because in real world problems crisp 

separation of clusters is rarely possible due to overlapping of classes. Also there are 

exceptions which cannot be suitably assigned to any cluster. Fuzzy sets extend to clustering in 

that objects of the data set may be fractionally assigned to multiple clusters, that is, each point 

of data set belongs to groups by membership function. This allows for ambiguity in the data 

and yields detailed information about the structure of the data, and the algorithms adapt to 

noisy data and classes that are not well separated. Most fuzzy cluster analysis methods 

optimize subjective function that evaluates given fuzzy assignment of data to clusters.  

 One of the classic fuzzy clustering approaches is the Fuzzy C-means Method designed by 

Bezdek, J. C [10]. In brief, for data set X with size of n and cluster number of c, it extends the 

classical within groups sum of squared error objective function to fuzzy version by 

minimizing the objective function with weighting exponent m, 1 ≤ m <: 

 

  Jm(U,V) = n
k=1

c
i=1 (uik)

m
d

2
(xk,vi),  (1) 

 

 where U is partition of X in c part, V = v = v (v1,v2,...,vc) are the cluster centers in R
p
 , 

and A is any (p×p) symmetric positive definite matrix defined as the following: 

 

  d(xk,vi)=((xk − vi)
T
(xk − vi))

1/2
,  (2) 

 

 where d(xk,vi)is an inner product induced norm on R
p
, uik is referred to as the grade of 

membership of xk to the cluster i. 

 The fuzzy C-Means (FCM) uses an iterative optimization of the objective function, based 

on the weighted similarity measure between xk and the cluster center vi. During each iteration, 

it calculates the c cluster centers {vi,t},i =1,...,c 

 

  vi,t = n
k=1 u

m
ik,t-1 xk/ 

n
k=1 u

m
ik,t-1 , (3) 

 

 for those data points not of any current cluster center, it calculate the following 

 

  (uik,t)
-1

 = c
j=1 (dik,t / djk,t)

(2/m-1), (4) 

 

 When a predefined termination condition is satisfied, the algorithm is terminated. 

 

4.  Solving Similarity Problem 
 

 We will briefly introduce our previous work on PanKNN [20] in this section. PanKNN is 

a novel approach in which we analyze the nearest neighbor problems from a new perspective. 

We define the new meaning for the K nearest neighbor problem, and design algorithms 

accordingly. The similarity between data point and query point is not based on the difference 

aggregation on all the dimensions. We propose self-adaptive strategies to dynamically select 

dimensions based on the different situations of the comparison.  



International Journal of Future Generation Communication and Networking 
Vol. 4, No. 1, March 2011 

 

 

26 

 

 Consider query point Q(1,1,1,1,1) and two data points X1 (2,3,8,10000,10000) and X2 

(50,50,50,50,50) in 5 dimensional data space, with Di, i=1, 2, ..., 5 representing each 

dimension, respectively. Which data point is closer to Q? If we use the tradition Euclidean 

distance, the conclusion is that X2 is closer to Q than X1 is in the full data space. However, if 

we take a closer look at the first three dimensions, we can easily find that X1 is much closer to 

than X2 in the subspace of those dimensions. This example illustrates why we not only need 

to consider how close data point is to the query point, but also need to consider which and 

how many dimensions are involved.  

 For a given data point Xi, and a given query point Q, we call the distance between Xi and 

Q as Pandistance PD(Xi,Q). PD(Xi, Q) does not calculate the aggregated differences between 

Xi and Q on all dimensions. Instead, it only takes into account those dimensions on which Xi 

is close enough to Q, and sums them up. This strategy not only avoids the negative impacts 

from those dimensions on which Xi is far to Q, but also eliminate the curse of dimensionality 

caused by similarity functions such as Euclidean distance which calculates the square root of 

the sum of squares of distances on each dimensions. On more dimensions Xi is close (within 

the sets of nearest neighbor) to Q, the smaller Pandistance Xi has to Q. If we have two data 

points Xi and Xj, we judge which data point is closer to Q based on how many dimensions on 

which they are close enough (within dimension-wise nearest neighbors) to Q, as well as their 

average distances to Q on such dimensions.  

 Given a data set DS, we first calculate the difference δil of each data point Xi to the query 

point on each dimension Dl. Then we sort the ids on each dimension Dl based on δil, and 

select the first K ids on each dimension Dl and put them into KSl. We move the ids in all KSl 

to the set GS, and calculate the PD(Xi, Q) for each data point if its id is in GS. Finally, we sort 

the ids based on the Pandistance and select the first K ids in the sorted list as the ids of nearest 

neighbors of Q. We do not need to calculate the difference using different number of 

dimensions. The number of dimensions and the subset of dimensions associated with data 

point Xi are both dynamically decided depending on the values of Xi and their rankings on 

different dimensions. 

 

5.  Searching Nearest Neighbors in the Presence of Obstacles 
 

 The PanKNN algorithm solves the similarity search problems in a new perspective 

efficiently and effectively. However, it does not consider the cases where there are obstacles 

in the data sets from which we try to find the nearest neighbors for given query point (an 

example is shown in figure 1). In this section we propose to design an algorithm in the 

presence of obstacles, which will be referred to as OPanKNN. 

 

5.1. Definition 

 

Let n denote the total number of data points and d be the dimensionality of the data space. 

Let Dl be the lth dimension, where l = 1, 2, ..., d. Let the input d-dimensional data set be X 

 

  X = {X1, X2, ..., Xn}  (5)  

 

which is normalized to be within the hypercube [0, 1]
d⊂R

d
. Each data point Xi is d-

dimensional vector: 

 

  Xi = [xi1, xi2,..., xid]  (6)  
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Data point Xi has the id number i. Let Q be the query point: Q = [q1, q2, ..., qd]. Let Δi 

=[δi1, δi2, ..., δid] as the array of differences between the data point Xi and the query point Q 

on each dimension. There are obstacles existing in the data set as well. Obstacles can be 

represented in various ways. One simple and efficient way is to represent them as 

multidimensional points like the data points in the data set and the query point Q. Let m be 

the total number of obstacle points, and we can represent the set of obstacle points as: 

 

  C = {C1, C2,..., Cm}  (7)  

 

which is also normalized to be within the hypercube [0,1]
d
 ⊂ R

d
. Each obstacle point Ch 

is a d-dimensional vector:  

 

  Ch = [ch1,ch2,...,chd]  (8)  

 

Each value chl where h=1,2,...,m and l=1,2,...,d represents obstacle point on dimension Dl 

where values on the two different sides of chl are obstructed to be in the same segment (zone). 

 

5.2. Segments on Each Dimension 

 

5.2.1 Segments: 

 

Since the full data space is normalized, the value range of the data points on each 

dimension Dl, where l =1, 2, ...,d should be within the interval [0,1], as well as the value 

range of the obstacle points. On dimension Dl, the values of all the obstacle points are:  

 

 c1l,c2l,...,cml  (9)  

 

We sort them in ascending order  

 

 c1l’,c2l’,...,cml’  (10)  

 

where c1l’ ≥ 0 and cml’ ≤ 1. For the purpose of consistency, let c0l’ represent 0, and let cm+1,l’ 

represent 1. Thus the value range on dimension Dl can be divided into m+1 zones (segments): 

 

   [c0l’, c1l’),[ c1l’, c2l’),..., [cml’, cm+1,l’]   (11) 

 

We use Zl0, Zl1, ..., Zl,m to represent them respectively. Figure 2 shows an example of 

segments on dimension Dl represented by Zlj where j=0,1,...,m.  

For a given query point, Q =[q1,q2,...,qd], suppose its value ql on Dl ∈[ckl’,ck+1l’), or Zlk 

where k=0,1,...,m (as shown in figure 2). For each data point Xi in X, on each dimension Dl, 

where l=1,2,...,d, we not only check if its value xil on Dl is close to ql which is the value of Q 

on Dl, but also check if xil is in the segment ql belongs to on Dl. 
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Figure 2: Segments on Dimension Dl 

 

5.2.2 Example 1: 

 

Here is an example. Suppose we have a 4-dimensional data set which contains 3 data 

points, and each of them can be represented as 4-dimensional vector:  

 

 X1: [0.12, 0.13, 0.14, 0.21];   

 X2: [0.41, 0.25, 0.101, 0.232];   

 X3: [0.91, 0.32, 0.14, 0.52].  

We represent each dimension as D1, D2, D3 and D4. If there are two obstacle points: C1 = 

[0.15, 0.27, 0.94, 0.55] and C2 = [0.66, 0.46, 0.88, 0.31], they divide each dimension (D1, D2, 

D3 and D4) into 3 zones (segments):  

 on D1 : [0, 0.15), [0.15,0.66), [0.66,1];  

 on D2: [0. 0.27) [0.27, 0.46), [0.46,1];  

 on D3: [0, 0.88) [0.88, 0.94) [0.94.1];  

 on D4: [0, 0.31) [0.31,0.55) [0.55,1].  

We can use Z10 to represent the first segment on D1: [0, 0.15), use Z11 to represent the 

second segment on D1: [0.15, 0.66), etc.  

For a given query point Q = [0.20, 0.20, 0.30, 0.40], its value on D1 which is q1=0.20 

falls into the second segment on D1: Z11 = [0.15, 0.66). For data point X1: [0.12, 0.13, 0.14, 

0.21], its value on D1 is x11=0.12. x11 is the closest to q1=0.20 compared to x21=0.41 and 

x31=0.91.  

However, x11 is not in the same segment with q1 on D1. On the other hand, x21 is farther 

from q1 than x11, however, it is in the same segment Z11 with q1. Figure 3 shows the example.  

 

5.2.3 Example 2: 

 

Here is another example. Suppose we have 3-dimensional data set which contains 4 data 

points, and each of them can be represented as 3- dimensional vector:  

 X4: [0.21, 0.91, 0.32];  

 X5: [0.33, 0.45, 0.11]; 

 X6: [0.10, 0.72, 0.53]; 

 X7: [0.72, 0.15 0.37]; 

We represent each dimension as D1, D2, and D3. If there are three obstacle points: C3 = 

[0.11, 0.85, 0.66], C4 = [0.79, 0.32, 0.10], and C5 = [0.51, 0.20, 0.43], they divide each 

dimension (D1, D2, and D3) into 4 zones (segments):  

 on D1 : [0, 0.11), [0.11,0.51), [0.51,0.79), [0.79,1];  

 on D2: [0. 0.20), [0.20, 0.32), [0.32,0.85), [0.85,1];  

 on D3: [0, 0.10), [0.10, 0.43) [0.43,0.66), [0.66,1].  
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We can use Z10 to represent the first segment on D1: [0, 0.11), use Z11 to represent the 

second segment on D1: [0.11, 0.51), etc. For a given query point Q’ = [0.77, 0.84, 0.23], its 

value on D2 which is q’2=0.84 falls into the third segment on D2: Z22 = [0.32, 0.85). For data 

point X4: [0.21, 0.91, 0.32], its value on D2 is x42 = 0.91. x42 is the closest to q’2 =0.84 

compared to x52 = 0.45, x62 = 0.72, and x72 = 0.15. However, x42 is not in the same segment 

with q’2 on D2. On the other hand, x62 is farther from q’2 than x42, however, it is in the same 

segment Z22 with q’2. Figure 4 shows the example. 

 
Figure 3: An Example of Segments, Obstacle Points, Data Points and Query 

Point on Dimension D1 

 

 
Figure 4: An Example of Segments, Obstacle Points, Data Points and a Query 

Point on Dimension D2 

 

5.3. Distance Calculation 

 

 From the examples above we can see that, if xil is not in the same segment of ql (figure 2), 

even if xil is one of the K closest value to ql, we still can not say it is very close Q on Dl. On 

the other hand, it is also inappropriate to completely discard xil in the following calculation. 

 Here we adopt the fuzzy concept to determine the weight xil should have when we 

calculate the distance between Xi and Q.  

 Given data set DS of n data points X = {X1, X2, ..., Xn} with d dimensions D1, D2, ..., Dd, 

query point Q, and set of obstacle points C = {C1, C2, ..., Cm} in the same data space, we first 

sort the data points on each dimension Dl, l=1, 2, ..., d, based on δil which is the difference 

between data point Xi and Q on dimension Dl. On each dimension Dl, l=1, 2, ..., d, let KSl be 

the set which contains the ids of the first K data points in the sorted list. We call these first 

data points as dimension-wise K nearest neighbor to Q on Dl.  
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 Those data points whose ids are in KSl, however, might not be in the same segment (zone) 

with ql. This is due to the possibility that Zlk which ql belongs to contains less than K data 

points. 

 For each data point Xi, i=1, 2, ... n, let Fi =[fi1, fi2, ..., fid] in which 

 
 

 

 

 

 

From the formula above, we can see that if Xi is one of the K nearest neighbors to Q on 

dimension Dl, but it is not in the segment with Q on Dl, its distance to Q on Dl will have 

weight as the minimum of | δil | /min(|ql-ckl’|, |ql-ck+1,l’|) and 1/| δil | which are both larger than 

1. This ensures that the distance between Xi and Q on Dl will be enlarged as “penalty” for Xi 

not being in the same segment with Q on Dl. The part of 1/| δil | ensures that the enlarged 

distance will not exceed 1 which is the value range on Dl.  

In the first example mentioned previously in this section, for X1: [0.12, 0.13, 0.14, 0.21], 

its value on D1 is x11 = 0.12. q1 = 0.20 is in the segment Z11 = [0.15, 0.66). δ11 = 0.12 - 0.20 =         

-0.08. Here we demonstrate how to calculate f11: if i  KS1, f11 = 0; if i∈ KS1 and xil Z11, f11 

= 1; otherwise, f11 = min (| δ11 | /min(|q1-c11’|, |q1-c2,l’|, 1/| δ11 |)) = min(0.08/min(|0.20-0.15|, 

0.20-0.66), 1/0.08) = min(1.6,12.5) = 12.5 

Given two d-dimensional points Xi = [xi1, xi2, ..., xid] and Q = [q1, q2, ..., qd], with the 

existence of obstacle points C ={C1, C2, ..., Cm}, and Dl as the dimension l, l=1, 2, ..., d, the 

Pan-distance of Xi to Q in the presence of obstacles  

 
      

 

 

where δil is the difference between Xi and Q on Dl, fil is the weight for xil whose value 

depends on whether iKSl and whether xil is in the same segment with ql on Dl. PDO(Xi, Q) 

can also be defined as the product of the average distance of Xi to Q on those dimensions 

where Xi is in the sets of dimension-wise K nearest neighbors to Q, and the weight to the 

average difference based on how many dimensions there are where Xi is in the sets of K 

nearest neighbors to Q. 

 

5.4. Finding Nearest Neighbors 

 

Given a data set DS of n data points X= {X1, X2, ..., Xn} with Dl as the dimension l, l=1, 2, 

..., d, a query point Q in the same data space, and a set of obstacle points C={C1, C2, ..., Cm}, 

we try to find set PKS which consists of k data points from DS so that for any data point Xi ∈
PKS and any data point Xj∈DS − PKS, PDO( Xi, Q) ≤ PDO( Xj Q). The set PKS is the Pan-K 

Nearest Neighbor set of Q in DS in the presence of obstacles.  
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The OPanKNN algorithm is described in Figure 5. 
 

Algorithm OPanKNN  

          (DS: data set,  

             Q: query point,  

              d: dimensionality of DS,  

             K: number of data points required) 

Begin 

1) For each Xi ∈ DS, we first calculate Δ i = [δi1, δi2, ..., δid] in which δil =|xil − ql|; 

2) On each dimension Dl, l=1, 2, ..., d, we sort the set of obstacle points c1l, c2l, ..., cml in 

ascending order to c1l’, c2l’,..., cml’. The value range on dimension Dl can be divided 

into m+1 zones (segments): [c0l’, c1l’),[ c1l’, c2l’),..., [cml’, cm+1l’] represented by Zl0, Zl1, 

..., Zlm;  

3) On each dimension Dl, l=1, 2, ..., d, we sort the ids of the data points in DS, based on 

δil for Xi. Let Sl be the sorted list on Dl; 

4) Let KSl be the subset of Sl which contains the first K ids in Sl. For each data point Xi, 

i=1, 2, ... n, we generate Fi =[fi1, fi2, ..., fid] in which the value of fil is based on the 

calculation in the formula (12);  

5) Let set GS = {i} in which i∈KSl, l=1, 2, ..., d. For each data point Xi, where i∈GS, we 

calculate PDO(Xi, Q); 

6) Sort GS ={i} based on PDO(Xi, Q);  

7) Let set PKS contain the first ids∈ GS. Return PKS. 

End 

 

Figure 5: Proc: OPanKNN 

 

5.5. Time and Space Analysis 

 

Suppose the size of the data set is n and there are m obstacle points. Throughout the 

process, we need to keep track of the information of all points, which collectively occupies 

O(n + m) space.  

For one query point Q, we need to sort the data points, sort the obstacle points, and select 

K distances to Q on each dimension. The time required is d(nlogn + mlogm +K). With l query 

points, on each dimension, only one sorting is needed, and we need to select K distances to 

different query points for l times. The time requires is d(nlogn+ mlogm + lK). 

 

6. Experiment 
 

We conducted comprehensive experiments on both synthetic and real data sets to assess 

the accuracy and efficiency of the proposed approach. Our experiments were run on Intel(R) 

Pentium(R) 4 with CPU of 3.39GHz and Ram of 0.99 GB. 
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6.1. Experiments on High-Dimensional Data Set 

 

To test the scalability of our algorithm over dimensionality, data size, K as the number of 

nearest neighbors required for the query points, and M as the number of obstacle points, we 

designed a synthetic data generator to produce data sets with normalized distributions. The 

sizes of the data sets vary from 10,000, 15,000, ... to 50,000, with the gap of 5,000 between 

each two adjacent data set sizes, and the dimensions of the data sets vary from 15, 20, ... to 

50, with the gap of 10 between each two adjacent numbers of dimensions. We also generated 

random data points as obstacle points for the experiment. 

 

 
Figure 6: Running Time on One Query Point with Increasing Dimensions (K=20 

and M=10) 

 

Figure 6 shows the running time of groups of data sets with dimensions increasing from 

15 to 50. Each group has fixed data size (from 10,000, 15,000, ... to 50,000). We set K as 20 

and M as 10. Figure 7 shows the running time of groups of data sets on one query with sizes 

increasing from 10,000 to 50,000. Each group has fixed number of dimensions (from 15, 20, 

... to 50). We set K as 20 and as M 10. The two figures indicate that our algorithm is scalable 

over dimensionality and data size. Figure 8 shows the running time of 3 groups of data sets 

with the size of 10000, 20000 and 30000 on one query with increasing from 5,10,... to 30. We 

set dimension K as 15 and M as 10. 
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Figure7: Running Time on One Query Point with Increasing Dataset Sizes 

(K=20 and M=10) 

    
Figure 8: Running Time on One Query Point with Increasing K Values 

(Dimensionality=15 and M=10)  

 
Figure 9: Running Time on One Query Point with Increasing M Values 

(Dimensionality = 15 and K=20) 
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Figure 9 shows the running time of 3 groups of data sets with the size of 10000, 20000 

and 30000 on one query with increasing from 5, 10, ... to 25. We set dimension K as 15 and 

M as 20. Figure 8 and figure 9 indicate that our algorithm is scalable over the number of 

nearest points and the number of obstacle points M. 

 

6.2. Experiments of PanKNN vs. OPanKNN 

 

In this section we will demonstrate how OPanKNN improves the performance compared 

to the original PanKNN which does not consider the presence of obstacles. 

We use two real data sets from UCI Machine Learning Repository [7] to demonstrate the 

performance difference of PanKNN vs. OPanKNN.  

The first data set is Wine Recognition data set which contains the results of a chemical 

analysis of wines grown in the same region in Italy but derived from three different cultivars. 

It contains 178 instances, each of which has 13 features 14 (dimensions), including alcohol, 

magnesium, color intensity, etc. The data set has three clusters with the sizes of 59, 71 and 48. 

The second data set is Ecoli data set which contains data regarding Protein Localization 

Sites. This data set is made up of 336 instances, with each instance having seven features 

(dimensions). It contains 8 clusters with the sizes of 143, 77, 52, 35, 20, 5, 2 and 2.  

We first use VizCluster on data sets to demonstrate the distribution of the data sets in an 

intuitive way. VizCluster [17] is an interactive visualization tool for multidimensional data. It 

combines the merits of both multidimensional scatterplot and parallel coordinates. Integrated 

with useful features, it can give a simple, fast, intuitive and yet powerful view of the data set. 

Due to the space limitation, here we just demonstrate the data distributions for Wine data and 

Ecoli data. Figures 10 and 11 show the demonstration on Wine data and Ecoli data 

respectively. Different shapes of the points present different cluster id information. 

 

 
Figure 10: Demonstration of Wine Data Using VizCluster 
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Figure 11: Demonstration of Ecoli Data Using VizCluster 

 

We first perform the algorithms on the Wine data set. The accuracy rate of OPanKNN is 

93.3%, which is higher than the accuracy rate of PanKNN (92.9%). We also run the algorithm 

on Ecoli data set. Again the OPanKNN algorithm has the higher accuracy rate (90.3%) than 

PanKNN (89.7%). 

 

6.3. Experiments on More Real Data Set  

 

We next evaluate the effectiveness of our proposed approach, OPanKNN, for finding 

nearest neighbors in the presence of obstacles. The real data sets were also obtained from UCI 

Machine Learning Repository [7]. 

The first one is the ionosphere data set which is a radar data set collected by system in 

Goose Bay, Labrador. It contains 351 data points, each of which has 34 dimensions. There are 

two classes in the ionosphere data: g as good, and b as bad.  

The second data set is the glass data set for different glass types. It contains 214 data 

points, each of which has 9 dimensions. There are 7 classes in the glass data, class 1 to class 

7.  

The third data set is the iris data set for various iris plant types. It contains 150 data 

points, each of which has 4 dimensions. There are 3 classes in the iris data: Irissetosa, 

Irisversicolor, and Irisvirginica. 

Here we demonstrate the testing results of those data sets and compare the results with 

other algorithms such as Frequent K-n-match algorithm [21] and IGrid [5].  

We apply strategy to design the experiment and evaluation which is similar to the one 

described in [21]. For each real data set, we randomly select data points as the query points 

and obstacle points, and perform our algorithm using K as 10. 200 query points are randomly 

selected. For each of them, 5 data points are randomly selected as obstacle points, and 10 data 

points are retrieved as its nearest neighbors. If a retrieved data point has the same class with 

the query point it is associated with, and there is no obstacle point in between the retrieved 

data point and the query point, we call it successful retrieval. Otherwise, we call the data 

point unsuccessful retrieval. We calculate how many successful retrievals we have among the 

results from performing OPanKNN on these 200 query points, and divide it by 2000 (which is 

the number of query points times K) to calculate the accuracy rate.  
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We first perform the algorithms on the ionosphere data set. The accuracy rate of 

OPanKNN algorithm is 93.1%, which is higher than the accuracy rate of IGrid (87.9%), and 

that of Freq. K-n-match algorithm, which is 90.6%. 

We next use the glass data set to test various algorithms. The accuracy rate of OPanKNN 

algorithm is 91.2%, which is higher than the accuracy rate of IGrid (86.5%), and that of Freq. 

K-n-match algorithm, which is 90.8%.  

We conduct experiments on the iris data set as well. Among the three algorithms, 

OPanKNN has the highest accuracy rate which is 90.4%, higher than both IGrid (83.1%) and 

Freq. K-n-match algorithm (90.1%). 

 

7.  Conclusion 
 

In the paper we present our strategy to design the similarity search approaches in the 

presence of obstacles. On each dimension we divide the value range into segments based on 

the obstacle points and conduct our OPanKNN algorithm to find K nearest neighboring points 

for a given query point Q. In the future work, we will conduct more experiments on synthetic 

and real data sets to test and demonstrate the efficiency and effectiveness of our approach. 
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