
Kennesaw State University
DigitalCommons@Kennesaw State University

Faculty Publications

3-2011

An Approach to Nearest Neighboring Search for
Multi-dimensional Data
Yong Shi
Kennesaw State University, yshi5@kennesaw.edu

Li Zhang
Eastern Michigan University

Lei Zhu
Clayton State University

Follow this and additional works at: https://digitalcommons.kennesaw.edu/facpubs

Part of the Databases and Information Systems Commons, and the Statistics and Probability
Commons

This Article is brought to you for free and open access by DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Faculty
Publications by an authorized administrator of DigitalCommons@Kennesaw State University. For more information, please contact
digitalcommons@kennesaw.edu.

Recommended Citation
Shi, Y., Zhang, L., & Zhu, L. (2011). An approach to nearest neighboring search for multi-dimensional data. International Journal of
Future Generation Communication & Networking, 4(1), 23-37.

https://digitalcommons.kennesaw.edu?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F2471&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/facpubs?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F2471&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/facpubs?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F2471&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F2471&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F2471&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F2471&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

International Journal of Future Generation Communication and Networking
Vol. 4, No. 1, March 2011

23

An Approach to Nearest Neighboring Search for
Multi-dimensional Data

Yong Shi
Department of

Computer Science and
Information Systems

Kennesaw State
University

1000 Chastain Road
Kennesaw, GA 30144
yshi5@kennesaw.edu

Li Zhang
Department of

Computer Science
Eastern Michigan

University
Ypsilanti, MI 48197
li.zhang@emich.edu

Lei Zhu
Department of

Information
Technology

Clayton State
University

2000 Clayton Stat
Blvd. Morrow, GA

30260
leizhu@clayton.edu

Abstract

 Finding nearest neighbors in large multi-dimensional data has always been one of the

research interests in data mining field. In this paper, we present our continuous research on

similarity search problems. Previously we have worked on exploring the meaning of K

nearest neighbors from a new perspective in PanKNN [20]. It redefines the distances between

data points and a given query point Q, efficiently and effectively selecting data points which

are closest to Q. It can be applied in various data mining fields. A large amount of real data

sets have irrelevant or obstacle information which greatly affects the effectiveness and

efficiency of finding nearest neighbors for a given query data point. In this paper, we present

our approach to solving the similarity search problem in the presence of obstacles. We apply

the concept of obstacle points and process the similarity search problems in a different way.

This approach can assist to improve the performance of existing data analysis approaches.

 Keywords: K-nearest search, multi-dimensional data, obstacles

1. Introduction

 Huge amount of data have been generated in many disciplines nowadays. The similarity

search problem has been studied in the last decade, and many algorithms haves been proposed

to solve the K nearest neighbor search [15, 19, 2, 14, 11]. We previously proposed PanKNN

[20] which is a novel technique that explores the meaning of K nearest neighbors from a new

perspective. It redefines the distances between data points and a given query point Q, and

selects data points which are closest to Q efficiently and effectively. In this paper, we first

give a brief introduction about our previous work on PanKNN and discuss the Fuzzy concept;

then, we propose to use the Fuzzy concept to design OPanKNN algorithm that targets solving

the nearest neighbors problems in the presence of obstacles.

2. Related work

 The similarity between two data points used to be based on a similarity function such as

Euclidean distance which aggregates the difference between each dimension of the two data

International Journal of Future Generation Communication and Networking
Vol. 4, No. 1, March 2011

24

points in traditional nearest neighbor problems. In those applications, the nearest neighbor

problems are solved based on the distance between the data point and the query point over a

fixed set of dimensions (features). However, such approaches only focus on full similarities,

i.e., the similarity in full data space of the data set. Also early methods [1, 8, 23] suffer from

the “curse of dimensionality”. In a high dimensional space the data are usually sparse, and

widely used distance metric such as Euclidean distance may not work well as dimensionality

goes higher. Recent research [9] shows that in high dimensions nearest neighbor queries

become unstable: the difference of the distances of farthest and nearest points to some query

point does not increase as fast as the minimum of the two, thus the distance between two data

points in high dimensionality is less meaningful. Some approaches [16, 4, 3] are proposed

targeting partial similarities. However, they have limitations such as the requirement of the

fixed subset of dimensions, or fixed number of dimensions as the input parameter(s) for the

algorithms.

Figure 1: A Data Set with Obstacles

 There are quite a few approaches designed to detect clusters in the presence of obstacles

and facilitators. For example, COD CLARANS [6] is modified version of the CLARANS

[18] partitioning algorithm which performs clustering processes in the presence of obstacles.

AUTOCLUST+ [13] is version of AUTOCLUST[12] enhanced to handle obstacles, which

does not require parameters. DBRS+ [25] is derived from DBRS [22], and it handles both

obstacles and facilitators.

 However, none of these algorithms considers detecting outliers simultaneously with

clustering process. In many cases, outliers are as important as clusters, such as credit card

fraud detection, discovery of criminal activities, discovery of computer intrusion, and etc.

Analyzing the data distribution with the consideration of obstacles is critical for many data

sets. For example, figure 1 shows two dimensional data set where there are two curves

(obstacles) that cut through the data set, separating it into isolated subgroups, some of which

would have been in the same clusters have these two curves not existed.

3. Fuzzy Concept

 Various data sets in the real world are not naturally well organized and fuzzy concept can

be applied to further improve the data analysis approaches. The concept of fuzzy sets was first

International Journal of Future Generation Communication and Networking
Vol. 4, No. 1, March 2011

25

introduced by Zadeh [24] to represent vagueness. The use of fuzzy set theory is becoming

popular because it produces not only crisp decision when necessary but also corresponding

degree of membership. Usually, membership functions are defined based on a distance

function, such that membership degrees express proximities of entities to cluster centers. In

conventional clustering, sample is either assigned to or not assigned to group. Assigning each

data point to exactly one cluster often causes problems, because in real world problems crisp

separation of clusters is rarely possible due to overlapping of classes. Also there are

exceptions which cannot be suitably assigned to any cluster. Fuzzy sets extend to clustering in

that objects of the data set may be fractionally assigned to multiple clusters, that is, each point

of data set belongs to groups by membership function. This allows for ambiguity in the data

and yields detailed information about the structure of the data, and the algorithms adapt to

noisy data and classes that are not well separated. Most fuzzy cluster analysis methods

optimize subjective function that evaluates given fuzzy assignment of data to clusters.

 One of the classic fuzzy clustering approaches is the Fuzzy C-means Method designed by

Bezdek, J. C [10]. In brief, for data set X with size of n and cluster number of c, it extends the

classical within groups sum of squared error objective function to fuzzy version by

minimizing the objective function with weighting exponent m, 1 ≤ m <:

 Jm(U,V) = n
k=1

c
i=1 (uik)

m
d

2
(xk,vi), (1)

 where U is partition of X in c part, V = v = v (v1,v2,...,vc) are the cluster centers in R
p
 ,

and A is any (p×p) symmetric positive definite matrix defined as the following:

 d(xk,vi)=((xk − vi)
T
(xk − vi))

1/2
, (2)

 where d(xk,vi)is an inner product induced norm on R
p
, uik is referred to as the grade of

membership of xk to the cluster i.

 The fuzzy C-Means (FCM) uses an iterative optimization of the objective function, based

on the weighted similarity measure between xk and the cluster center vi. During each iteration,

it calculates the c cluster centers {vi,t},i =1,...,c

 vi,t = n
k=1 u

m
ik,t-1 xk/ 

n
k=1 u

m
ik,t-1 , (3)

 for those data points not of any current cluster center, it calculate the following

 (uik,t)
-1

 = c
j=1 (dik,t / djk,t)

(2/m-1), (4)

 When a predefined termination condition is satisfied, the algorithm is terminated.

4. Solving Similarity Problem

 We will briefly introduce our previous work on PanKNN [20] in this section. PanKNN is

a novel approach in which we analyze the nearest neighbor problems from a new perspective.

We define the new meaning for the K nearest neighbor problem, and design algorithms

accordingly. The similarity between data point and query point is not based on the difference

aggregation on all the dimensions. We propose self-adaptive strategies to dynamically select

dimensions based on the different situations of the comparison.

International Journal of Future Generation Communication and Networking
Vol. 4, No. 1, March 2011

26

 Consider query point Q(1,1,1,1,1) and two data points X1 (2,3,8,10000,10000) and X2

(50,50,50,50,50) in 5 dimensional data space, with Di, i=1, 2, ..., 5 representing each

dimension, respectively. Which data point is closer to Q? If we use the tradition Euclidean

distance, the conclusion is that X2 is closer to Q than X1 is in the full data space. However, if

we take a closer look at the first three dimensions, we can easily find that X1 is much closer to

than X2 in the subspace of those dimensions. This example illustrates why we not only need

to consider how close data point is to the query point, but also need to consider which and

how many dimensions are involved.

 For a given data point Xi, and a given query point Q, we call the distance between Xi and

Q as Pandistance PD(Xi,Q). PD(Xi, Q) does not calculate the aggregated differences between

Xi and Q on all dimensions. Instead, it only takes into account those dimensions on which Xi

is close enough to Q, and sums them up. This strategy not only avoids the negative impacts

from those dimensions on which Xi is far to Q, but also eliminate the curse of dimensionality

caused by similarity functions such as Euclidean distance which calculates the square root of

the sum of squares of distances on each dimensions. On more dimensions Xi is close (within

the sets of nearest neighbor) to Q, the smaller Pandistance Xi has to Q. If we have two data

points Xi and Xj, we judge which data point is closer to Q based on how many dimensions on

which they are close enough (within dimension-wise nearest neighbors) to Q, as well as their

average distances to Q on such dimensions.

 Given a data set DS, we first calculate the difference δil of each data point Xi to the query

point on each dimension Dl. Then we sort the ids on each dimension Dl based on δil, and

select the first K ids on each dimension Dl and put them into KSl. We move the ids in all KSl

to the set GS, and calculate the PD(Xi, Q) for each data point if its id is in GS. Finally, we sort

the ids based on the Pandistance and select the first K ids in the sorted list as the ids of nearest

neighbors of Q. We do not need to calculate the difference using different number of

dimensions. The number of dimensions and the subset of dimensions associated with data

point Xi are both dynamically decided depending on the values of Xi and their rankings on

different dimensions.

5. Searching Nearest Neighbors in the Presence of Obstacles

 The PanKNN algorithm solves the similarity search problems in a new perspective

efficiently and effectively. However, it does not consider the cases where there are obstacles

in the data sets from which we try to find the nearest neighbors for given query point (an

example is shown in figure 1). In this section we propose to design an algorithm in the

presence of obstacles, which will be referred to as OPanKNN.

5.1. Definition

Let n denote the total number of data points and d be the dimensionality of the data space.

Let Dl be the lth dimension, where l = 1, 2, ..., d. Let the input d-dimensional data set be X

 X = {X1, X2, ..., Xn} (5)

which is normalized to be within the hypercube [0, 1]
d⊂R

d
. Each data point Xi is d-

dimensional vector:

 Xi = [xi1, xi2,..., xid] (6)

International Journal of Future Generation Communication and Networking
Vol. 4, No. 1, March 2011

27

Data point Xi has the id number i. Let Q be the query point: Q = [q1, q2, ..., qd]. Let Δi

=[δi1, δi2, ..., δid] as the array of differences between the data point Xi and the query point Q

on each dimension. There are obstacles existing in the data set as well. Obstacles can be

represented in various ways. One simple and efficient way is to represent them as

multidimensional points like the data points in the data set and the query point Q. Let m be

the total number of obstacle points, and we can represent the set of obstacle points as:

 C = {C1, C2,..., Cm} (7)

which is also normalized to be within the hypercube [0,1]
d
 ⊂ R

d
. Each obstacle point Ch

is a d-dimensional vector:

 Ch = [ch1,ch2,...,chd] (8)

Each value chl where h=1,2,...,m and l=1,2,...,d represents obstacle point on dimension Dl

where values on the two different sides of chl are obstructed to be in the same segment (zone).

5.2. Segments on Each Dimension

5.2.1 Segments:

Since the full data space is normalized, the value range of the data points on each

dimension Dl, where l =1, 2, ...,d should be within the interval [0,1], as well as the value

range of the obstacle points. On dimension Dl, the values of all the obstacle points are:

 c1l,c2l,...,cml (9)

We sort them in ascending order

 c1l’,c2l’,...,cml’ (10)

where c1l’ ≥ 0 and cml’ ≤ 1. For the purpose of consistency, let c0l’ represent 0, and let cm+1,l’

represent 1. Thus the value range on dimension Dl can be divided into m+1 zones (segments):

 [c0l’, c1l’),[c1l’, c2l’),..., [cml’, cm+1,l’] (11)

We use Zl0, Zl1, ..., Zl,m to represent them respectively. Figure 2 shows an example of

segments on dimension Dl represented by Zlj where j=0,1,...,m.

For a given query point, Q =[q1,q2,...,qd], suppose its value ql on Dl ∈[ckl’,ck+1l’), or Zlk

where k=0,1,...,m (as shown in figure 2). For each data point Xi in X, on each dimension Dl,

where l=1,2,...,d, we not only check if its value xil on Dl is close to ql which is the value of Q

on Dl, but also check if xil is in the segment ql belongs to on Dl.

International Journal of Future Generation Communication and Networking
Vol. 4, No. 1, March 2011

28

Figure 2: Segments on Dimension Dl

5.2.2 Example 1:

Here is an example. Suppose we have a 4-dimensional data set which contains 3 data

points, and each of them can be represented as 4-dimensional vector:

 X1: [0.12, 0.13, 0.14, 0.21];

 X2: [0.41, 0.25, 0.101, 0.232];

 X3: [0.91, 0.32, 0.14, 0.52].

We represent each dimension as D1, D2, D3 and D4. If there are two obstacle points: C1 =

[0.15, 0.27, 0.94, 0.55] and C2 = [0.66, 0.46, 0.88, 0.31], they divide each dimension (D1, D2,

D3 and D4) into 3 zones (segments):

 on D1 : [0, 0.15), [0.15,0.66), [0.66,1];

 on D2: [0. 0.27) [0.27, 0.46), [0.46,1];

 on D3: [0, 0.88) [0.88, 0.94) [0.94.1];

 on D4: [0, 0.31) [0.31,0.55) [0.55,1].

We can use Z10 to represent the first segment on D1: [0, 0.15), use Z11 to represent the

second segment on D1: [0.15, 0.66), etc.

For a given query point Q = [0.20, 0.20, 0.30, 0.40], its value on D1 which is q1=0.20

falls into the second segment on D1: Z11 = [0.15, 0.66). For data point X1: [0.12, 0.13, 0.14,

0.21], its value on D1 is x11=0.12. x11 is the closest to q1=0.20 compared to x21=0.41 and

x31=0.91.

However, x11 is not in the same segment with q1 on D1. On the other hand, x21 is farther

from q1 than x11, however, it is in the same segment Z11 with q1. Figure 3 shows the example.

5.2.3 Example 2:

Here is another example. Suppose we have 3-dimensional data set which contains 4 data

points, and each of them can be represented as 3- dimensional vector:

 X4: [0.21, 0.91, 0.32];

 X5: [0.33, 0.45, 0.11];

 X6: [0.10, 0.72, 0.53];

 X7: [0.72, 0.15 0.37];

We represent each dimension as D1, D2, and D3. If there are three obstacle points: C3 =

[0.11, 0.85, 0.66], C4 = [0.79, 0.32, 0.10], and C5 = [0.51, 0.20, 0.43], they divide each

dimension (D1, D2, and D3) into 4 zones (segments):

 on D1 : [0, 0.11), [0.11,0.51), [0.51,0.79), [0.79,1];

 on D2: [0. 0.20), [0.20, 0.32), [0.32,0.85), [0.85,1];

 on D3: [0, 0.10), [0.10, 0.43) [0.43,0.66), [0.66,1].

International Journal of Future Generation Communication and Networking
Vol. 4, No. 1, March 2011

29

We can use Z10 to represent the first segment on D1: [0, 0.11), use Z11 to represent the

second segment on D1: [0.11, 0.51), etc. For a given query point Q’ = [0.77, 0.84, 0.23], its

value on D2 which is q’2=0.84 falls into the third segment on D2: Z22 = [0.32, 0.85). For data

point X4: [0.21, 0.91, 0.32], its value on D2 is x42 = 0.91. x42 is the closest to q’2 =0.84

compared to x52 = 0.45, x62 = 0.72, and x72 = 0.15. However, x42 is not in the same segment

with q’2 on D2. On the other hand, x62 is farther from q’2 than x42, however, it is in the same

segment Z22 with q’2. Figure 4 shows the example.

Figure 3: An Example of Segments, Obstacle Points, Data Points and Query

Point on Dimension D1

Figure 4: An Example of Segments, Obstacle Points, Data Points and a Query

Point on Dimension D2

5.3. Distance Calculation

 From the examples above we can see that, if xil is not in the same segment of ql (figure 2),

even if xil is one of the K closest value to ql, we still can not say it is very close Q on Dl. On

the other hand, it is also inappropriate to completely discard xil in the following calculation.

 Here we adopt the fuzzy concept to determine the weight xil should have when we

calculate the distance between Xi and Q.

 Given data set DS of n data points X = {X1, X2, ..., Xn} with d dimensions D1, D2, ..., Dd,

query point Q, and set of obstacle points C = {C1, C2, ..., Cm} in the same data space, we first

sort the data points on each dimension Dl, l=1, 2, ..., d, based on δil which is the difference

between data point Xi and Q on dimension Dl. On each dimension Dl, l=1, 2, ..., d, let KSl be

the set which contains the ids of the first K data points in the sorted list. We call these first

data points as dimension-wise K nearest neighbor to Q on Dl.

International Journal of Future Generation Communication and Networking
Vol. 4, No. 1, March 2011

30

 Those data points whose ids are in KSl, however, might not be in the same segment (zone)

with ql. This is due to the possibility that Zlk which ql belongs to contains less than K data

points.

 For each data point Xi, i=1, 2, ... n, let Fi =[fi1, fi2, ..., fid] in which

From the formula above, we can see that if Xi is one of the K nearest neighbors to Q on

dimension Dl, but it is not in the segment with Q on Dl, its distance to Q on Dl will have

weight as the minimum of | δil | /min(|ql-ckl’|, |ql-ck+1,l’|) and 1/| δil | which are both larger than

1. This ensures that the distance between Xi and Q on Dl will be enlarged as “penalty” for Xi

not being in the same segment with Q on Dl. The part of 1/| δil | ensures that the enlarged

distance will not exceed 1 which is the value range on Dl.

In the first example mentioned previously in this section, for X1: [0.12, 0.13, 0.14, 0.21],

its value on D1 is x11 = 0.12. q1 = 0.20 is in the segment Z11 = [0.15, 0.66). δ11 = 0.12 - 0.20 =

-0.08. Here we demonstrate how to calculate f11: if i  KS1, f11 = 0; if i∈ KS1 and xil Z11, f11

= 1; otherwise, f11 = min (| δ11 | /min(|q1-c11’|, |q1-c2,l’|, 1/| δ11 |)) = min(0.08/min(|0.20-0.15|,

0.20-0.66), 1/0.08) = min(1.6,12.5) = 12.5

Given two d-dimensional points Xi = [xi1, xi2, ..., xid] and Q = [q1, q2, ..., qd], with the

existence of obstacle points C ={C1, C2, ..., Cm}, and Dl as the dimension l, l=1, 2, ..., d, the

Pan-distance of Xi to Q in the presence of obstacles

where δil is the difference between Xi and Q on Dl, fil is the weight for xil whose value

depends on whether iKSl and whether xil is in the same segment with ql on Dl. PDO(Xi, Q)

can also be defined as the product of the average distance of Xi to Q on those dimensions

where Xi is in the sets of dimension-wise K nearest neighbors to Q, and the weight to the

average difference based on how many dimensions there are where Xi is in the sets of K

nearest neighbors to Q.

5.4. Finding Nearest Neighbors

Given a data set DS of n data points X= {X1, X2, ..., Xn} with Dl as the dimension l, l=1, 2,

..., d, a query point Q in the same data space, and a set of obstacle points C={C1, C2, ..., Cm},

we try to find set PKS which consists of k data points from DS so that for any data point Xi ∈
PKS and any data point Xj∈DS − PKS, PDO(Xi, Q) ≤ PDO(Xj Q). The set PKS is the Pan-K

Nearest Neighbor set of Q in DS in the presence of obstacles.

International Journal of Future Generation Communication and Networking
Vol. 4, No. 1, March 2011

31

The OPanKNN algorithm is described in Figure 5.

Algorithm OPanKNN

 (DS: data set,

 Q: query point,

 d: dimensionality of DS,

 K: number of data points required)

Begin

1) For each Xi ∈ DS, we first calculate Δ i = [δi1, δi2, ..., δid] in which δil =|xil − ql|;

2) On each dimension Dl, l=1, 2, ..., d, we sort the set of obstacle points c1l, c2l, ..., cml in

ascending order to c1l’, c2l’,..., cml’. The value range on dimension Dl can be divided

into m+1 zones (segments): [c0l’, c1l’),[c1l’, c2l’),..., [cml’, cm+1l’] represented by Zl0, Zl1,

..., Zlm;

3) On each dimension Dl, l=1, 2, ..., d, we sort the ids of the data points in DS, based on

δil for Xi. Let Sl be the sorted list on Dl;

4) Let KSl be the subset of Sl which contains the first K ids in Sl. For each data point Xi,

i=1, 2, ... n, we generate Fi =[fi1, fi2, ..., fid] in which the value of fil is based on the

calculation in the formula (12);

5) Let set GS = {i} in which i∈KSl, l=1, 2, ..., d. For each data point Xi, where i∈GS, we

calculate PDO(Xi, Q);

6) Sort GS ={i} based on PDO(Xi, Q);

7) Let set PKS contain the first ids∈ GS. Return PKS.

End

Figure 5: Proc: OPanKNN

5.5. Time and Space Analysis

Suppose the size of the data set is n and there are m obstacle points. Throughout the

process, we need to keep track of the information of all points, which collectively occupies

O(n + m) space.

For one query point Q, we need to sort the data points, sort the obstacle points, and select

K distances to Q on each dimension. The time required is d(nlogn + mlogm +K). With l query

points, on each dimension, only one sorting is needed, and we need to select K distances to

different query points for l times. The time requires is d(nlogn+ mlogm + lK).

6. Experiment

We conducted comprehensive experiments on both synthetic and real data sets to assess

the accuracy and efficiency of the proposed approach. Our experiments were run on Intel(R)

Pentium(R) 4 with CPU of 3.39GHz and Ram of 0.99 GB.

International Journal of Future Generation Communication and Networking
Vol. 4, No. 1, March 2011

32

6.1. Experiments on High-Dimensional Data Set

To test the scalability of our algorithm over dimensionality, data size, K as the number of

nearest neighbors required for the query points, and M as the number of obstacle points, we

designed a synthetic data generator to produce data sets with normalized distributions. The

sizes of the data sets vary from 10,000, 15,000, ... to 50,000, with the gap of 5,000 between

each two adjacent data set sizes, and the dimensions of the data sets vary from 15, 20, ... to

50, with the gap of 10 between each two adjacent numbers of dimensions. We also generated

random data points as obstacle points for the experiment.

Figure 6: Running Time on One Query Point with Increasing Dimensions (K=20

and M=10)

Figure 6 shows the running time of groups of data sets with dimensions increasing from

15 to 50. Each group has fixed data size (from 10,000, 15,000, ... to 50,000). We set K as 20

and M as 10. Figure 7 shows the running time of groups of data sets on one query with sizes

increasing from 10,000 to 50,000. Each group has fixed number of dimensions (from 15, 20,

... to 50). We set K as 20 and as M 10. The two figures indicate that our algorithm is scalable

over dimensionality and data size. Figure 8 shows the running time of 3 groups of data sets

with the size of 10000, 20000 and 30000 on one query with increasing from 5,10,... to 30. We

set dimension K as 15 and M as 10.

International Journal of Future Generation Communication and Networking
Vol. 4, No. 1, March 2011

33

Figure7: Running Time on One Query Point with Increasing Dataset Sizes

(K=20 and M=10)

Figure 8: Running Time on One Query Point with Increasing K Values

(Dimensionality=15 and M=10)

Figure 9: Running Time on One Query Point with Increasing M Values

(Dimensionality = 15 and K=20)

International Journal of Future Generation Communication and Networking
Vol. 4, No. 1, March 2011

34

Figure 9 shows the running time of 3 groups of data sets with the size of 10000, 20000

and 30000 on one query with increasing from 5, 10, ... to 25. We set dimension K as 15 and

M as 20. Figure 8 and figure 9 indicate that our algorithm is scalable over the number of

nearest points and the number of obstacle points M.

6.2. Experiments of PanKNN vs. OPanKNN

In this section we will demonstrate how OPanKNN improves the performance compared

to the original PanKNN which does not consider the presence of obstacles.

We use two real data sets from UCI Machine Learning Repository [7] to demonstrate the

performance difference of PanKNN vs. OPanKNN.

The first data set is Wine Recognition data set which contains the results of a chemical

analysis of wines grown in the same region in Italy but derived from three different cultivars.

It contains 178 instances, each of which has 13 features 14 (dimensions), including alcohol,

magnesium, color intensity, etc. The data set has three clusters with the sizes of 59, 71 and 48.

The second data set is Ecoli data set which contains data regarding Protein Localization

Sites. This data set is made up of 336 instances, with each instance having seven features

(dimensions). It contains 8 clusters with the sizes of 143, 77, 52, 35, 20, 5, 2 and 2.

We first use VizCluster on data sets to demonstrate the distribution of the data sets in an

intuitive way. VizCluster [17] is an interactive visualization tool for multidimensional data. It

combines the merits of both multidimensional scatterplot and parallel coordinates. Integrated

with useful features, it can give a simple, fast, intuitive and yet powerful view of the data set.

Due to the space limitation, here we just demonstrate the data distributions for Wine data and

Ecoli data. Figures 10 and 11 show the demonstration on Wine data and Ecoli data

respectively. Different shapes of the points present different cluster id information.

Figure 10: Demonstration of Wine Data Using VizCluster

International Journal of Future Generation Communication and Networking
Vol. 4, No. 1, March 2011

35

Figure 11: Demonstration of Ecoli Data Using VizCluster

We first perform the algorithms on the Wine data set. The accuracy rate of OPanKNN is

93.3%, which is higher than the accuracy rate of PanKNN (92.9%). We also run the algorithm

on Ecoli data set. Again the OPanKNN algorithm has the higher accuracy rate (90.3%) than

PanKNN (89.7%).

6.3. Experiments on More Real Data Set

We next evaluate the effectiveness of our proposed approach, OPanKNN, for finding

nearest neighbors in the presence of obstacles. The real data sets were also obtained from UCI

Machine Learning Repository [7].

The first one is the ionosphere data set which is a radar data set collected by system in

Goose Bay, Labrador. It contains 351 data points, each of which has 34 dimensions. There are

two classes in the ionosphere data: g as good, and b as bad.

The second data set is the glass data set for different glass types. It contains 214 data

points, each of which has 9 dimensions. There are 7 classes in the glass data, class 1 to class

7.

The third data set is the iris data set for various iris plant types. It contains 150 data

points, each of which has 4 dimensions. There are 3 classes in the iris data: Irissetosa,

Irisversicolor, and Irisvirginica.

Here we demonstrate the testing results of those data sets and compare the results with

other algorithms such as Frequent K-n-match algorithm [21] and IGrid [5].

We apply strategy to design the experiment and evaluation which is similar to the one

described in [21]. For each real data set, we randomly select data points as the query points

and obstacle points, and perform our algorithm using K as 10. 200 query points are randomly

selected. For each of them, 5 data points are randomly selected as obstacle points, and 10 data

points are retrieved as its nearest neighbors. If a retrieved data point has the same class with

the query point it is associated with, and there is no obstacle point in between the retrieved

data point and the query point, we call it successful retrieval. Otherwise, we call the data

point unsuccessful retrieval. We calculate how many successful retrievals we have among the

results from performing OPanKNN on these 200 query points, and divide it by 2000 (which is

the number of query points times K) to calculate the accuracy rate.

International Journal of Future Generation Communication and Networking
Vol. 4, No. 1, March 2011

36

We first perform the algorithms on the ionosphere data set. The accuracy rate of

OPanKNN algorithm is 93.1%, which is higher than the accuracy rate of IGrid (87.9%), and

that of Freq. K-n-match algorithm, which is 90.6%.

We next use the glass data set to test various algorithms. The accuracy rate of OPanKNN

algorithm is 91.2%, which is higher than the accuracy rate of IGrid (86.5%), and that of Freq.

K-n-match algorithm, which is 90.8%.

We conduct experiments on the iris data set as well. Among the three algorithms,

OPanKNN has the highest accuracy rate which is 90.4%, higher than both IGrid (83.1%) and

Freq. K-n-match algorithm (90.1%).

7. Conclusion

In the paper we present our strategy to design the similarity search approaches in the

presence of obstacles. On each dimension we divide the value range into segments based on

the obstacle points and conduct our OPanKNN algorithm to find K nearest neighboring points

for a given query point Q. In the future work, we will conduct more experiments on synthetic

and real data sets to test and demonstrate the efficiency and effectiveness of our approach.

 References

[1] White D.A. and Jain R. Similarity Indexing with the SS-tree. In Proceedings of the 12th Intl. Conf. on Data
Engineering, pages 516–523, New Orleans, Louisiana, February 1996.

[2] E. Achtert, C. Bohm, P. Kroger, P. Kunath, A. Pryakhin, and M. Renz. Efficient reverse k-nearest neighbor
search in arbitrary metric spaces. In SIGMOD’06, pages 515–526, New York, NY, USA, 2006. ACM.

[3] C. C. Aggarwal. Towards meaningful high-dimensional nearest neighbor search by human-computer
interaction. In ICDE, 2002.

[4] C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On the surprising behavior of distance metrics in high
dimensional space. Lecture Notes in Computer Science, 1973, 2001.

[5] C. C. Aggarwal and P. S. Yu. The IGrid index: reversing the dimensionality curse for similarity indexing in
high dimensional space. In Knowledge Discovery and Data Mining, pages 119–129, 2000.

[6] Anthony K.H. Tung, Jean Hou and Jiawei Han. Spatial clustering in the presence of obstacles. In ICDE ’01:
Proceedings of the 17th International Conference on Data Engineering, page 359, Washington, DC, USA,
2001. IEEE Computer Society.

[7] S. D. Bay. The UCI KDD Archive [http://kdd.ics.uci.edu]. University of California, Irvine, Department of
Information and Computer Science.

[8] D. A. Berchtold S., Keim and H.P. Kriegel. The X-tree: An index structure for high-dimensional data. In
VLDB’96, pages 28–39, Bombay, India, 1996.

[9] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is “nearest neighbor” meaningful? In
International Conference on Database Theory 99, pages 217–235, Jerusalem, Israel, 1999.

[10] J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Academic Publishers,
Norwell, MA, USA, 1981.

[11] B. Cui, H. Shen, J. Shen, and K. Tan. Exploring bit-difference for approximate KNN search in high-
dimensional databases. In Australasian Database Conference, 2005.

[12] V. EstivillCastro and I. Lee. Autoclust: Automatic clustering via boundary extraction for mining massive
point-data sets. In Proceedings of the 5th International Conference on Geocomputation, pages 23–25, 2000.

[13] V. EstivillCastro and I. Lee. Autoclust+: Automatic clustering of point-data sets in the presence of obstacles.
In TSDM ’00: Proceedings of the First International Workshop on Temporal, Spatial, and Spatio-Temporal
Data Mining-Revised Papers, pages 133–146, London, UK, 2001. SpringerVerlag.

[14] R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarity search and classification via rank aggregation,
2003.

[15] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In The VLDB
Journal, pages 518–529, 1999.

International Journal of Future Generation Communication and Networking
Vol. 4, No. 1, March 2011

37

[16] A. Hinneburg, C. C. Aggarwal, and D. A. Keim. What is the nearest neighbor in high dimensional spaces? In
The VLDB Journal, pages 506–515, 2000.

[17] Li Zhang, Chun Tang, Yong Shi, Yuqing Song, Aidong Zhang and Murali Ramanathan. VizCluster: An
Interactive Visualization Approach to Cluster Analysis and Its Application on Microarray Data. 2002.

[18] R. T. Ng and J. Han. Efficient and effective clustering methods for spatial data mining. In VLDB ’94:
Proceedings of the 20th International Conference on Very Large Data Bases, pages 144–155, San Francisco,
CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[19] T. Seidl and H.P. Kriegel. Optimal multi-step k-nearest neighbor search. SIGMOD Rec., 27(2):154–165,
1998.

[20] Y. Shi and L. Zhang. A dimension-wise approach to similarity search problems. In the 4th International
Conference on Data Mining (DMIN’08), 2008.

[21] A. K. H. Tung, R. Zhang, N. Koudas, and B. C. Ooi. Similarity search: a matching based approach. In VLDB
’06, pages 631–642. VLDB Endowment, 2006.

[22] X. Wang and H. J. Hamilton. Dbrs: A density-based spatial clustering method with random sampling. In
PAKDD, pages 563–575, 2003.

[23] R. Weber, H.J. Schek, and S. Blott. A quantitative analysis and performance study for similarity-search
methods in high-dimensional spaces. In Proc. 24th Int. Conf. Very Large Data Bases, VLDB, pages 194–205,
24–27 1998.

[24] L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

[25] O. R. Zaıane and C.H. Lee. Clustering spatial data when facing physical constraints. In ICDM ’02:
Proceedings of the 2002 IEEE International Conference on Data Mining, page 737, Washington, DC, USA,
2002. IEEE Computer Society.

Authors

 Yong Shi received the BS and MS degrees, both in computer science,

from the University of Science and Technology of China in 1996 and

1999, respectively. He received Ph.D. in computer science from the State
University of New York at Buffalo in 2006. He is currently an assistant

professor in the Department of Computer Science and Information

Systems in Kennesaw State University. His research interests include
data mining, database, machine learning, and information retrieval.

 Li Zhang received his BS and MS degrees in computer science in 1991

and 1998, MA in mathematics in 1997, and Ph. D. in computer science
from the State University of New York at Buffalo in 2004. Currently he

is an associate professor of the department of computer science, Eastern

Michigan University. His research interests include bioinformatics, data
mining, pattern recognition, visualization, computer graphics, non-well-

founded set theory, computational linguistic, knowledge representation,

logical reasoning system, artificial intelligence, database, e-commerce
and web services.

Lei Zhu received Ph.D. degree in Computer Science and Engineering
from State University of New York at Buffalo in 2001, and received

M.S. degree and B.S. degree in Computer Science and Technology from

Peking University in 1998 and 1995, respectively. Currently he is an
Associate Professor of Information Technology, Clayton State

University, Morrow, Georgia. Dr. Zhu’s research interests include

content-based multimedia indexing and retrieval, Information retrieval
and data mining.

International Journal of Future Generation Communication and Networking
Vol. 4, No. 1, March 2011

38

	Kennesaw State University
	DigitalCommons@Kennesaw State University
	3-2011

	An Approach to Nearest Neighboring Search for Multi-dimensional Data
	Yong Shi
	Li Zhang
	Lei Zhu
	Recommended Citation

	Journal Paper Format

