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Pólya’s Theorem with Zeros

Mari Castle ∗ Victoria Powers † Bruce Reznick ‡

December 16, 2009

Abstract

Let R[X] := R[X1, . . . , Xn]. Pólya’s Theorem says that if a form (homoge-
neous polynomial) p ∈ R[X] is positive on the standard n-simplex ∆n, then for
sufficiently large N all the coefficients of (X1 + · · ·+Xn)Np are positive. This
paper is the culmination of a project to characterize forms, possibly with zeros
on ∆n, which satisfy a slightly relaxed version of Pólya’s Theorem (in which
the condition of “positive” is replaced by “nonnegative”) and to give a bound
for the N needed. In this paper we give such a characterization along with a
bound. This is a broad generalization of previous results of the authors.

Key Words: Pólya’s Theorem, positive polynomials, sums of squares

1 Introduction

Let R[X] := R[X1, . . . , Xn] and let R+[X] denote polynomials in R[X] with non-
negative coefficients. We write ∆n for the standard n-simplex

{(x1, . . . , xn) ∈ Rn | xi ≥ 0,
∑

xi = 1}.

Pólya’s Theorem [5] says that if p is a homogeneous polynomial in n variables
which is positive on ∆n, then for a sufficiently large exponent N ∈ N, all of the
coefficients of (X1 + · · ·+Xn)Np are positive. This elegant and beautiful result has
many applications, both in pure and applied mathematics.

In [7], the second and third authors gave an explicit bound for the exponent N
in terms of the degree, the size of the coefficients, and the minimum of p on the
simplex. The current paper is the culmination of a project, begun in [6] and [8],
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to characterize forms, possibly with zeros on ∆n, which satisfy a slightly relaxed
version of Pólya’s Theorem (in which the condition of “positive” is replaced by
“nonnegative”) and to give a bound for the N needed. In this paper we give such
a characterization along with a bound. This is a broad generalization of the results
in [6] and [8].

There are recent results by other authors related to the work in this paper.
Recently, H.-M. Mok and W.-K. To [4] gave a sufficient condition for a form to
satisfy the relaxed version of Pólya’s Theorem, along with a bound in this case. In
[9], S. Burgdorf, C. Scheiderer, and M. Schweighofer look at more general questions
on polynomial identities certifying strict or non-strict positivity of a polynomial
on a closed set in Rn. As a corollary to one of their results, they give a sufficient
condition for the relaxed Pólya’s Theorem to hold for a form, involving the positivity
of the partial derivatives of a form on faces of the simplex. For both of these results,
the condition given is sufficient but not necessary; they can be deduced from our
results.

The original Pólya’s Theorem with bound from [7] has been used by other au-
thors in applications. For example, in [10] it is used to give an algorithmic proof of
Schmüdgen’s Positivstellensatz, and in [2] it is used to give results on approximat-
ing the stability number of a graph. Also, in [3], an easy generalization of Pólya’s
Theorem and the bound to a noncommutative setting is given and used to construct
relaxations for some semidefinite programming problems which arise in control the-
ory. We believe that the results in this paper should have broad application to these
and other areas.

2 Preliminaries

Let Po(n, d) be the set of forms of degree d in n variables for which there exists
an N ∈ N such that (X1 + ... + Xn)Np ∈ R+[X]. In other words, Po(n, d) are the
forms which satisfy the conclusion of Pólya’s Theorem, with “positive coefficients”
replaced by “nonnegative coefficients.”

For I ⊆ {1, ..., n}, let F (I) denote the face of ∆n given by

{(x1, . . . , xn) ∈ ∆n | xi = 0 for i ∈ I}.

The relative interior of the face F (I) is the set

{(x1, . . . , xn) ∈ F (I) | xj > 0 for all j ∈ Ic},

where Ic denotes {1, . . . , n} \ I. For f(x) ∈ R[X], Z(f) denotes the zeros of f .
Given f =

∑
α∈N aαX

α ∈ R[X], let supp(f) denote {α ∈ N | aα 6= 0} and define

Λ+(f) := {α ∈ supp(f) | aα > 0}, Λ−(f) := {β ∈ supp(f) | aβ < 0}.

For α = (α1, . . . , αn), β = (β1, . . . , βn) in Nn, we write α � β if αi ≤ βi for all i,
and α ≺ β if α � β and α 6= β.
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For α = (α1, . . . , αn) ∈ N and a face F = F (I) of ∆n, it will be convenient to
use the notation αF for (α̃1, . . . α̃n) ∈ N, where α̃i = αi for i ∈ I and α̃j = 0 for
j ∈ Ic. Then αF � βF iff αi ≤ βi for all i ∈ I. (This is denoted α �F β in [1] and
[4].)

For a form p =
∑
aαX

α ∈ R[X], we write p = p+ − p− where p+, p− ∈ R+[X].
Then for N ∈ N and d = deg p, we have

(X1 + · · ·+Xn)Np =(X1 + · · ·+Xn)N (p+ − p−)

=(X1 + · · ·+Xn)Np+ − (X1 + · · ·+Xn)Np−

=
∑

|γ|=N+d

AγX
γ −

∑
|γ|=N+d

BγX
γ .

We call Aγ the positive part and Bγ the negative part of the coefficient of Xγ .
From calculations given in [7], we have

Aγ =
∑

α ∈ Λ+(p)
α � γ

N !
(γ1 − α1)! · · · (γn − αn)!

· aα (1)

Bγ =
∑

β ∈ Λ−(p)
β � γ

N !
(γ1 − β1)! · · · (γn − βn)!

· aβ (2)

We begin with some simple observations about forms in Po(n, d).

Proposition 1. Suppose p ∈ Po(n, d).

1. If u a point in the relative interior of a face F of ∆n and p(u) = 0, then p
vanishes everywhere F . In particular, if p(u) = 0 for u an interior point of
∆n, then p is the zero form.

2. Z(p) ∩∆n is a union of faces of ∆n.

3. If β ∈ Λ−(p), then for every proper nonzero face F of ∆n, there is α ∈ Λ+(p)
so that αF � βF .

Proof. We note that (1) is easy (a proof is given in [8, §3] and [1, Prop. 2]) and (2)
follows immediately from 1.

For (3), without loss of generality we can assume F = F ({1, . . . , r}) with 1 ≤ r <
n. We have N ∈ N with (

∑
Xi)Np ∈ R+[X]. Let γ = (β1, . . . , βn−1, βn +N) ∈ Nn,

then |γ| = N + d and β � γ. Write the coefficient of Xγ in (
∑
Xi)Np as Aγ − Bγ

as above, then since β � γ, by (2), Bγ > 0. Since the coefficient of Xγ in (
∑
Xi)Np

must be non-negative, this implies Aγ > 0 and hence, by (1), there is α ∈ Λ+(p)
with α � γ. This in turn implies αF � βF , which proves (3).
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Remark 1. The conditions in the proposition are necessary but not sufficient con-
ditions for p ∈ Po(n, d). This follows from [1, Example 2] or [4, Example 5.1].

In [4], H.-N. Mok and W.-K. To give a sufficient condition for p ∈ Po(n, d) which
is related to (3) in Proposition 1.

Theorem 1 ([4], Theorem 2). Suppose p is a form of degree d such that p ≥ 0 on
∆n, Z(p)∩∆n is a union of faces of ∆n, and p satisfies the following property: For
every face F of ∆n with F ⊆ Z(p) and each β ∈ Λ−(p), there is α ∈ Λ+(p) such
that αF ≺ βF . Then p ∈ Po(n, d).

This theorem will follow easily from our main theorem. The following example
shows that the condition in the above theorem is not necessary.

Example. Let pa(X1, X2, X3, X4) = X4
1 + X4

2 + X2
1 (X2

3 − aX3X4 + X2
4 ), where

0 < a ≤ 2. Then p ≥ 0 on ∆4, Z(p) ∩ ∆n = F ({1, 2}), Λ−(p) = {(2, 0, 1, 1)},
and Λ+(p) = {(4, 0, 0, 0), (0, 4, 0, 0), (2, 0, 0, 2), (2, 0, 2, 0)}. Hence all conditions of
Proposition 1 hold. Note that there is no α ∈ Λ+(p) with αF ≺ (2, 0, 1, 1)F , where
F = F ({1, 2}), so that the condition of Theorem 1 doesn’t hold.

If
∑4

j=1 γj = N+4, then the coefficient of N !
γ1!γ2!γ3!γ4!X

γ1
1 Xγ2

2 Xγ3
3 Xγ4

4 in (
∑

j Xj)Npa
is

fa(γ1, γ2, γ3, γ4) := γ1(γ1 − 1)(γ1 − 2)(γ1 − 3) + γ2(γ2 − 1)(γ2 − 2)(γ2 − 3)
+γ1(γ1 − 1)(γ3(γ3 − 1) + γ4(γ4 − 1)− aγ3γ4),

(3)

where any factor of the type γi −m which is negative is set to 0.
We want to determine the smallest N so that for all such γ, fa(γ) ≥ 0. We first

observe that

fa(2, 3, k, k) = 2(2k(k − 1)− ak2) = 2k((2− a)k − 2),

fa(3, 3, k, k) = 6(2k(k − 1)− ak2) = 6k((2− a)k − 2).

If a = 2, then fa(3, 3, k, k) < 0, so no N will ever work. Otherwise, assume 0 < a < 2
and observe that fa(3, 3, k, k) < 0 if

k <
2

2− a
.

Thus, if N = 2M and all coefficients are non-negative, we have

2M + 4 = 6 + 2k =⇒ N = 2k + 2 ≥ 2 + 2
⌈

2
2− a

⌉
and if N = 2M + 1 and all coefficients are non-negative, we have

2M + 5 = 6 + 2k =⇒ N = 2k + 1 ≥ 1 + 2
⌈

2
2− a

⌉
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Thus the smallest N satisfies the equation

N ≥ 1 + 2
⌈

2
2− a

⌉
.

A messy calculation, which we omit, shows that p1 ∈ Po(n, d) for all 0 < a < 2,
and there is a smallest such N = 4(2− a)−1 +O(1). In the last section, we will see
that the first statement and a bound that is asymptotically the same follows from
our main results.

3 Local Versions of Pólya’s Theorem

For α ∈ N, let ‖α‖ denote α
|α| and note that ‖α‖ ∈ ∆n. The original proof of

Pólya’s Theorem is “coefficient by coefficient”: For p > 0 on ∆n, a sequence of real
polynomials pε is constructed which converge uniformly to p on ∆n, such that the
coefficient of Xα in (

∑
Xi)Np is a positive multiple of pε(‖α‖), where ε = 1

N+d .
Using this technique, we can obtain “local” versions of the theorem, by which we
mean the result for coefficients which correspond to exponents α such that ‖α‖ lies
in a given closed subset of ∆n. To prove our main theorem, we will write ∆n as a
union of closed subsets so that we can apply one of the local versions to each of the
subsets.

The key to our local versions of Pólya’s Theorem and the bounds we obtain
is the simple observation that the main theorem in [7] generalizes immediately to
subsets of ∆n on which the form is positive.

If |α| = d, define c(α) := d!
α1!···αn! . Suppose p ∈ R[X] is homogeneous of degree

d, then write
p(X) =

∑
|α|=d

aαX
α =

∑
|α|=d

c(α)bαXα,

and let L(p) := max
|α|=d

|bα|. The following local result, which is in [6], is immediate

from the proof of Theorem 1 in [7]:

Proposition 2. Suppose S ⊆ ∆n is nonempty and closed and p ∈ R[X] is homo-
geneous of degree d such that p(x) > 0 for all x ∈ S. Let λ be the minimum of p on
S. Then for

N >
d(d− 1)

2
L(p)
λ
− d

and α ∈ Nn such that ‖α‖ ∈ S, the coefficient of Xα in (X1 + ... + Xn)Np is
nonnegative.

The above theorem will give us an N with a bound for the region of the simplex
away from the zeros. Then we will apply local results which work for closed subsets
of ∆n whose union contains the zero set of the form. We start with some notation
for certain closed subsets of ∆n containing subsets of a given face.
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Definition 1. Let F = F (I) be a face of ∆n.

1. For 0 < ε < 1, let ∆(F, ε) denote the following closed subset of ∆n containing
F :{

(x1, . . . , xn) ∈ ∆n |
∑
i∈I

xi ≤ ε
}

=
{

(x1, . . . , xn) ∈ ∆n |
∑
i∈Ic

xi ≥ 1− ε
}
.

2. We need notation for closed subsets containing the “middle” of F , i.e., the
part of F away from the lower dimensional faces. Given 0 < τ < 1 and
0 < ε < τ , let

C(F, ε, τ) := {(x1, . . . , xn) ∈ ∆(F, ε) | xi ≥ τ − ε for i ∈ Ic}.

3. Given 0 < τ < 1, define the following closed subset of the relative interior of
F :

W (F, τ) := {(x1, . . . , xn) ∈ F | xi ≥ τ for i ∈ Ic}

.

Remark 2. It is easy to check that if F is a face of dimension k ≥ 2, and F1, . . . , Fk
are the subfaces of F of dimension k − 1, then

∆(F, ε) ⊆ C(F, ε, τ) ∪∆(F1, τ) ∪ · · · ∪∆(Fk, τ)

The following proposition is a local result for closed neighborhoods of vertices
of the simplex, which follows immediately from the proof of Proposition 2 in [6].
For 1 ≤ i ≤ n, let vi denote the i-th vertex of ∆n, i.e., vi = F (I), where I =
{1, . . . , i− 1, i+ 1, . . . , n}.

Proposition 3. Suppose p is a form of degree d such that p ≥ 0 on ∆n. Let F = vi,
and suppose that for every β ∈ Λ−(p) there is some α ∈ Λ+(p) such that αF � βF .
Then there is ε > 0 and N ∈ N such that for every γ ∈ N with |γ| = N + deg p and
‖γ‖ ∈ ∆(F, ε), the coefficient of Xγ in (

∑
Xi)Np is nonnegative.

In particular, if p =
∑
aαX

α, let c be the minimum of {aα | α ∈ Λ+(p)},
d = deg(p), and U =

∑
|aα|, then this holds for

ε =
c

c+ U
, N >

d(d− 1)
2

L(p)
s

, where s =
c

2

(
2U

c+ 2U

)2

.

Finally, we need a localized Pólya’s Theorem which holds on the closed subsets
C(F, ε, τ) defined above. This result, without the explicit bound, is a special case
of [6, Proposition 1].

Lemma 1. Suppose F = F (I) is a face of ∆n, and φ, ψ ∈ R[X] are forms of the
same degree d such that
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1. φ > 0 on the relative interior of F ,

2. all monomials in φ have no factors Xi for i ∈ I, and

3. every monomial in ψ contains at least one factor Xi for some i ∈ I.

Given any β = (β1, . . . , βn) ∈ N such that βj = 0 for all j ∈ Ic and let p =
Xβ(φ + ψ). Then for any τ ∈ R with 0 < τ < 1/n, there is 0 < ε < τ and N ∈ N
such that the coefficient of Xα in (

∑
Xi)Np is nonnegative for any ‖α‖ ∈ C(F, ε, τ).

In particular, let λ be the minimum of φ on the closed subset W (F, τ/2) of the
relative interior of F , and let U be the sum of the absolute value of the coefficients
of p. Then this holds for

N > d(d− 1)
L(p)
λ
− d,

and

ε < min
{

λ

2dλ+ 2U
, τ

}
.

Proof. Let q = φ+ ψ. Claim: For ε and λ as given, q ≥ λ/2 on C(F, ε, τ)
Proof of claim: Fix ε with 0 < ε < τ/2 and let C = C(I, ε, τ). We want to bound
φ and ψ on C. Given x = (x1, . . . , xn) ∈ ∆(F, ε) and suppose γ ∈ supp(ψ). Then
xi ≤ ε for i ∈ I and Xγ contains a factor Xi for some i ∈ I, hence Xγ evaluated
at x is ≤ ε. It follows that |ψ(x)| ≤ Uε on ∆(F, ε). Since C ⊆ ∆(F, ε), we have
ψ ≥ −Uε on C.

Given x ∈ C, we have
∑
j∈Ic

xj = 1− t for t =
∑
i∈I

xi ≤ ε. Define a = (a1, . . . , an)

by setting ai =
xj

1− t
for j ∈ Ic and ai = 0 for i ∈ I. Then a ∈ F and for j ∈ Ic

we have aj =
xj

1− t
> xj ≥ τ − ε ≥ τ/2, hence a ∈ W . Then, since φ is a form of

degree d, φ(x) = (1− t)dφ(a) ≥ (1− ε)dλ.
Putting together the two bounds, we have for x ∈ C,

q(x) ≥ (1− ε)dλ− Uε ≥ (1− dε)λ− Uε = λ− (dλ+ U)ε.

Hence with ε as given we have q(x) ≥ λ− λ/2 = λ/2, and the claim is proven.
Now, by Proposition 2, for the given N we have that the coefficient of Xα in

(
∑
Xi)Nq is nonnegative for ‖α‖ ∈ C. We just need to show that this still holds

if we replace q by p = Xβq. Suppose γ ∈ supp((
∑
Xi)Np) with ‖γ‖ ∈ C, then

γ = α + β with α ∈ supp((
∑
Xi)Nq). Since βj = 0 for j ∈ Ic, we have γj = αj for

j ∈ Ic. Then since |γ| ≥ |α|, it is easy to see that γ ∈ C implies α ∈ C. It follows
that the coefficient of Xα in (

∑
Xi)Nq is nonnegative and therefore the coefficient

of Xγ in (
∑
Xi)Np is nonnegative, completing the proof.

Remark 3. The dependence of ε on τ is due to the fact that λ depends on τ .
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4 Pólya’s Theorem with Zeros

In this section we give necessary and sufficient conditions for a form to be in Po(n, d)
and a bound on the exponent N needed. One condition is the necessary condition
(3) from Proposition 1 for the faces of ∆n in Z(p). The second condition involves
the positivity of certain forms related to p on the relative interior of the faces in
Z(p).

For a form p and a face F of ∆n, the relation αF � βF defines a partial order on
Γ+(p). We say α ∈ Λ+(p) is minimal with respect to F if α is a minimal element in
this partial order, i.e., if there is no γ ∈ Λ+(p) such that γF ≺ αF . We start with
notation for certain subforms of p related to the elements minimal with respect to
a face.

Definition 2. Suppose p =
∑
aαX

α ∈ R[X].

1. For Γ ⊆ supp(p), p(Γ) denotes the form
∑

γ∈Γ aγX
γ .

2. For α ∈ supp(p) and a face F of ∆n, define

q(α, F ) := p({γ ∈ supp(p) | γF = αF })/XαF .

Note that q(α, F ) is a form in the variables {Xj | j ∈ Ic}, where F = F (I),
and XαF q(α, F ) is a subform of p.

Lemma 2. Suppose p ∈ Po(n, d) and F is a face of ∆n. Then for every α ∈ Λ+(p)
which is minimal with respect to F , the form q(α, F ) must be strictly positive on the
relative interior of the face F .

Proof. Suppose F = F (I) and set q := q(α, F ). Since p ∈ Po(n, d), there exists
N ∈ N such that (

∑n
i=1Xi)Np ∈ R+[X]. We claim that (

∑
j∈Ī Xj)NXαF q ∈ R+[X].

Suppose γ is in the support of (
∑

j∈Ī Xj)NXαF q, then by the definition of q,
γF = αF . Consider the coefficient of Xγ in (

∑n
i=1Xi)Np and let Aγ be the positive

part and Bγ the negative part, as in (1) and (2) in §2. Contributions to Aγ come
from δ ∈ Λ+(p) with δ � γ, which implies δF � γF = αF . Since α is minimal with
respect to F , it follows that the only contributions to Aγ come from δ ∈ Λ+(p) with
δF = αF . Since all such δ are in supp(XαF q), it follows that Aγ is the positive part
of the coefficient of Xγ in (

∑
j∈Ī Xj)NXαF q. Since XαF q is a subform of p, the

negative part of the coefficient of (
∑

j∈Ī Xj)NXαF q is clearly ≤ Bγ and it follows
that the coefficient of Xγ in (

∑
j∈Ī Xj)NXαF q ≥ Aγ −Bγ ∈ R+.

From the claim it follows that (
∑

j∈Ī Xj)Nq ∈ R+[X]. Since q is a form in
{Xj | j ∈ Ī}, this means that q satisfies Pólya’s Theorem on the simplex F (I).
Hence, by Proposition 1, q is strictly positive on the relative interior of F .

Theorem 2. Given p, a form of degree d, such that p ≥ 0 on ∆n and Z(p) ∩∆n

is a union of faces. Then p ∈ Po(n, d) if and only if for every face F ⊆ Z(p) the
following two conditions hold:
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1. For every β ∈ Λ−(p), there is α ∈ Λ+(p) so that αF � βF .

2. For every α ∈ Λ+(p) which is minimal with respect to F , the form q(α, F ) is
strictly positive on the interior of F .

Proof. Condition (1) is necessary by Proposition 1 and condition (2) is necessary
by Lemma 2.

Suppose the conditions hold for p =
∑
aαX

α ∈ R[X]. Assuming p is not
identically zero, by Lemma 1, any face in Z(p) ∩∆n has dimension ≤ n− 2. For a
closed set of ∆n which does not contain the zero set, we can apply Proposition 2,
hence the theorem will follow easily from the following claim:
Claim: For every face F contained in Z(p) ∩∆n we can find 0 < ε < 1 and N ∈ N
so that for any θ ∈ Nn with |θ| = N + d and ‖θ‖ ∈ ∆(I, ε), the coefficient of Xθ in
(
∑n

i=1Xi)Np is nonnegative.
Proof of claim: By induction on the dimension of F . If the dimension is 1, then
αF � βF with α 6= β implies αF ≺ βF , and we are done by Proposition 3.

Now suppose F has dimension k, 2 ≤ k ≤ n − 2, and the claim is true for all
subfaces of F of dimension k − 1. Let τ be the minimum of 1/n and the ε’s that
occurs among these subfaces and Ñ the maximum of the N ’s.

By assumption, for each β ∈ Λ−(p), there is α ∈ Λ+(p) such that αF � βF .
Clearly there is such an α which is minimal with respect to F . Order the set of
α ∈ Λ+(p) which are minimal with respect to F in some way and, one at a time,
define forms ψα as follows: Let Γα be the set of β ∈ Λ−(p) such that αF ≺ βF and
β is not contained in any previously defined Γα. Now let ψα = p(Γα)/XαF . Then
ψα is a form and every monomial of ψα contains at least one variable Xi for i ∈ I.

Now, for each α minimal with respect to F , let φα = q(α, F ) and consider
the subform XαF (φα + ψα) of p. By assumption, q(α, F ) is strictly positive on
the interior of F . Hence φα, ψα, and αF satisfy the conditions of Proposition 1
and thus there is some Nα ∈ N and εα > 0 such that the coefficient of Xγ in
(
∑
Xi)NαXαF (φα + ψα) is nonnegative for all γ ∈ Nn with ‖γ‖ ∈ C(F, εα, τ).
By construction, for every β ∈ Λ−(p), the term aβX

β in p occurs inXαF (φα+ψα)
for some α minimal with respect to F . Hence we can write

p =
∑

XαF (φα + ψα) + p̃,

where the sum is over that set of α’s minimal with respect to F , and p̃ has only
positive coefficients. Let ε be the minimum of the εα’s and τ/2, and let M be
the maximum of the Nα’s, then for γ ∈ supp((

∑
Xi)Mp with γ ∈ C(F, ε, τ), the

coefficient ofXγ is nonnegative. Since ∆(F, ε) ⊆ C(F, ε, τ)∪∆(F1, τ)∪· · ·∪∆(Fk, τ),
the claim now follows.

Now write Z(p) ∩ ∆n as a union of faces F1 ∪ · · · ∪ Fl, where Fi 6⊆ Fj for any
i 6= j, and apply the claim to each Fi, say we have that the claim holds with εi and
Ni. Let S be the closure of ∆n \ ∪li=1∆(F, εi), then p > 0 on S. By Lemma 2 there
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is M such that for every θ ∈ N with ‖θ‖ ∈ S the coefficient of Xθ in (
∑
Xi)Mp is

nonnegative. Taking the maximum of M and the Ni’s, we are done.

The sufficient condition for p ∈ Po(n, d) given in [4] follows easily from the
theorem.

Corollary 1. Suppose p is a form of degree d with p ≥ 0 on ∆n and Z(p)∩∆n is a
union of faces. Suppose further that for every face F ⊆ Z(p) and every β ∈ Λ−(p),
there exists α ∈ Λ+ such that αF ≺ βF .

Proof. If the given condition holds for p, then the first condition of Theorem 2 holds
trivially. For every α which is minimal with respect to F , by the given condition,
there is no β ∈ Λ−(p) such that βF = αF . Hence every q(α, F ) has only positive
coefficients and thus must be strictly positive on the interior of F . By Theorem 2,
this implies p ∈ Po(n, d).

We now give a bound on the exponent N needed in Theorem 2. The bound
will depend on the degree of p, the size of the coefficients, and constants which are
defined recursively in terms of minimums of the q(α, F )’s on a certain closed subset
of the interior of F . We begin with the definition of these constants.

Definition 3. Suppose p ∈
∑
aαX

α is a form of degree d and F is a face of ∆n

such that either F is a vertex or p satisfies (2) of Theorem 2 on every subface G
(including G = F ), i.e., for every α ∈ Λ+(p) which is minimal with respect to G,
the form q(α,G) is strictly positive on the interior of G. Suppose dimF = k, then
we define constants εi(F ), λi(F ) for i = 1, . . . , k, recursively as follows:

ε1 = min
{

c

c+ U
,

1
n

}
, λ1 =

c

2

(
2U

c+ 2U

)2

,

where c = min{aα | α ∈ Λ+(p)} and U =
∑

α∈supp(p) |aα|.
For 2 ≤ i ≤ k, for each subface G of F of dimension i, let λ(G) be the minimum

over all α minimal with respect to G of the minimum of q(α,G) on W (G, εi−1/2).
Now let λi be the minimum over all G’s of the λ(G)’s and choose

εi < min
{

λi
2dλi + 2U

, εi−1

}
. (4)

Finally, let ε(F ) = εk(F ) and λ(F ) = λk(F ).

Theorem 3. Given p ∈ Po(n, d), then Z(p)∩∆n is a union of faces of ∆n. Write
Z(p)∩∆n = F1∪· · ·∪Fl, where each Fi is a face and Fi 6⊆ Fj for all i 6= j. Let ε be
the minimum of {ε(Fi)} and λ the minimum of {λ(Fi)}. Then (

∑
Xi)Np ∈ R+[X]

for

N >
d(d− 1)

2
L(p) ·max

(
1
λ
,
1
θ

)
,

where θ is the minimum of p on the closure of ∆n \ (∆(F1, ε) ∪ · · · ∪∆(Fl, ε)).
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Proof. This follows from the proof of Theorem 2 and the bound in Lemma 1.

Example. We continue with our example from Section 2. For 0 < a ≤ 2, we have

p = X4
1 +X4

2 +X2
1X

2
3 +X2

1X
2
4 − aX2

1X3X4.

Recall Z(p) ∩ ∆n is the face F = F ({1, 2}). There are two elements of Λ+ which
are minimal with respect to F : (2, 0, 2, 0) and (2, 0, 0, 2). In both cases, the form
q(α, F ) = q := X2

3 +X2
4 − aX3X4. Note that q > 0 on the relative interior of F iff

a < 2 and hence Theorem 2 says that p ∈ Po(n, d) iff a < 2, as claimed in Section
2.

We now compute the bound from Theorem 3. We are interested in the behavior
as a → 2, hence there is no harm in assuming a ≥ 1. The first step is to compute
the constants ε = ε(F ) and λ = λ(F ) from Definition 3. We have L(p) = 1, c = 1,
and U = 4 + a, hence ε1 = 1

5+a and λ1 = 1
2(8+2a

9+2a)2.
Next we need to find λ2, which is the minimum of q on W (F, ε1/2). It’s easy

to check q has a local minimum of 2−a
4 at (0, 0, 1/2, 1/2) and this is the global

minimum. Hence λ(F ) = λ2 = 2−a
4 . We need ε2 satisfying (4), suppose we have

chosen an appropriate ε2 = t. Now we need to find θ, the minimum of p on S,
the closure of ∆4 \ ∆(F, t). There are no critical points in the interior of ∆n,
hence the minimum occurs on the boundary of S. Suppose X3 + X4 = t and
X1 +X2 = 1− t. An easy calculation shows that the minimum of X2

3 −aX3X4 +X2
4

is (2−a)t2

4 and this occurs when X3 = X4 = t/2. Thus we need to find the minimum

of X4
1 +X4

2 +X2
1

(
(2−a)t2

4

)
. Clearly, the X4

1 +X4
2 term will dominate, and for small

enough t, we will have max
(

1
λ ,

1
θ

)
= 4

2−a , which yields the bound

N >
24

2− a
,

which, as a→ 2, is asymptotically the same as the smallest exponent 4(2− a)−1 +
O(1) claimed in Section 2.
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