Pólya's Theorem with Zeros

Mari Castle

Kennesaw State University, mfc7379@kennesaw.edu
Victoria Powers
Emory University
Bruce Reznick
University of Illinois at Urbana-Champaign

Follow this and additional works at: https://digitalcommons.kennesaw.edu/facpubs
Part of the Analysis Commons, and the Applied Mathematics Commons

Recommended Citation

Castle, M., Powers, V., \& Reznick, B. (2011). Pólya's Theorem with zeros. Journal of Symbolic Computation, 46(9), 1039-1048.
doi:10.1016/j.jsc.2011.05.006

Pólya's Theorem with Zeros

Mari Castle * Victoria Powers ${ }^{\dagger} \quad$ Bruce Reznick \ddagger

December 16, 2009

Abstract

Let $\mathbb{R}[X]:=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$. Pólya's Theorem says that if a form (homogeneous polynomial) $p \in \mathbb{R}[X]$ is positive on the standard n-simplex Δ_{n}, then for sufficiently large N all the coefficients of $\left(X_{1}+\cdots+X_{n}\right)^{N} p$ are positive. This paper is the culmination of a project to characterize forms, possibly with zeros on Δ_{n}, which satisfy a slightly relaxed version of Pólya's Theorem (in which the condition of "positive" is replaced by "nonnegative") and to give a bound for the N needed. In this paper we give such a characterization along with a bound. This is a broad generalization of previous results of the authors.

Key Words: Pólya's Theorem, positive polynomials, sums of squares

1 Introduction

Let $\mathbb{R}[X]:=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ and let $\mathbb{R}^{+}[X]$ denote polynomials in $\mathbb{R}[X]$ with nonnegative coefficients. We write Δ_{n} for the standard n-simplex

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{i} \geq 0, \sum x_{i}=1\right\}
$$

Pólya's Theorem [5] says that if p is a homogeneous polynomial in n variables which is positive on Δ_{n}, then for a sufficiently large exponent $N \in \mathbb{N}$, all of the coefficients of $\left(X_{1}+\cdots+X_{n}\right)^{N} p$ are positive. This elegant and beautiful result has many applications, both in pure and applied mathematics.

In [7], the second and third authors gave an explicit bound for the exponent N in terms of the degree, the size of the coefficients, and the minimum of p on the simplex. The current paper is the culmination of a project, begun in [6] and [8],

[^0]to characterize forms, possibly with zeros on Δ_{n}, which satisfy a slightly relaxed version of Pólya's Theorem (in which the condition of "positive" is replaced by "nonnegative") and to give a bound for the N needed. In this paper we give such a characterization along with a bound. This is a broad generalization of the results in [6] and [8].

There are recent results by other authors related to the work in this paper. Recently, H.-M. Mok and W.-K. To [4] gave a sufficient condition for a form to satisfy the relaxed version of Pólya's Theorem, along with a bound in this case. In [9], S. Burgdorf, C. Scheiderer, and M. Schweighofer look at more general questions on polynomial identities certifying strict or non-strict positivity of a polynomial on a closed set in \mathbb{R}^{n}. As a corollary to one of their results, they give a sufficient condition for the relaxed Pólya's Theorem to hold for a form, involving the positivity of the partial derivatives of a form on faces of the simplex. For both of these results, the condition given is sufficient but not necessary; they can be deduced from our results.

The original Pólya's Theorem with bound from [7] has been used by other authors in applications. For example, in [10] it is used to give an algorithmic proof of Schmüdgen's Positivstellensatz, and in [2] it is used to give results on approximating the stability number of a graph. Also, in [3], an easy generalization of Pólya's Theorem and the bound to a noncommutative setting is given and used to construct relaxations for some semidefinite programming problems which arise in control theory. We believe that the results in this paper should have broad application to these and other areas.

2 Preliminaries

Let $P o(n, d)$ be the set of forms of degree d in n variables for which there exists an $N \in \mathbb{N}$ such that $\left(X_{1}+\ldots+X_{n}\right)^{N} p \in \mathbb{R}^{+}[X]$. In other words, $P o(n, d)$ are the forms which satisfy the conclusion of Pólya's Theorem, with "positive coefficients" replaced by "nonnegative coefficients."

For $I \subseteq\{1, \ldots, n\}$, let $F(I)$ denote the face of Δ_{n} given by

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \in \Delta_{n} \mid x_{i}=0 \text { for } i \in I\right\}
$$

The relative interior of the face $F(I)$ is the set

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \in F(I) \mid x_{j}>0 \text { for all } j \in I^{c}\right\}
$$

where I^{c} denotes $\{1, \ldots, n\} \backslash I$. For $f(x) \in \mathbb{R}[X], Z(f)$ denotes the zeros of f.
Given $f=\sum_{\alpha \in \mathbb{N}} a_{\alpha} X^{\alpha} \in \mathbb{R}[X]$, let $\operatorname{supp}(f)$ denote $\left\{\alpha \in \mathbb{N} \mid a_{\alpha} \neq 0\right\}$ and define

$$
\Lambda^{+}(f):=\left\{\alpha \in \operatorname{supp}(f) \mid a_{\alpha}>0\right\}, \quad \Lambda^{-}(f):=\left\{\beta \in \operatorname{supp}(f) \mid a_{\beta}<0\right\}
$$

For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$ in \mathbb{N}^{n}, we write $\alpha \preceq \beta$ if $\alpha_{i} \leq \beta_{i}$ for all i, and $\alpha \prec \beta$ if $\alpha \preceq \beta$ and $\alpha \neq \beta$.

For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}$ and a face $F=F(I)$ of Δ_{n}, it will be convenient to use the notation α_{F} for $\left(\tilde{\alpha}_{1}, \ldots \tilde{\alpha}_{n}\right) \in \mathbb{N}$, where $\tilde{\alpha}_{i}=\alpha_{i}$ for $i \in I$ and $\tilde{\alpha}_{j}=0$ for $j \in I^{c}$. Then $\alpha_{F} \preceq \beta_{F}$ iff $\alpha_{i} \leq \beta_{i}$ for all $i \in I$. (This is denoted $\alpha \preceq_{F} \beta$ in [1] and [4].)

For a form $p=\sum a_{\alpha} X^{\alpha} \in \mathbb{R}[X]$, we write $p=p^{+}-p^{-}$where $p^{+}, p^{-} \in \mathbb{R}^{+}[X]$. Then for $N \in \mathbb{N}$ and $d=\operatorname{deg} p$, we have

$$
\begin{aligned}
\left(X_{1}+\cdots+X_{n}\right)^{N} p & =\left(X_{1}+\cdots+X_{n}\right)^{N}\left(p^{+}-p^{-}\right) \\
& =\left(X_{1}+\cdots+X_{n}\right)^{N} p^{+}-\left(X_{1}+\cdots+X_{n}\right)^{N} p^{-} \\
& =\sum_{|\gamma|=N+d} A_{\gamma} X^{\gamma}-\sum_{|\gamma|=N+d} B_{\gamma} X^{\gamma}
\end{aligned}
$$

We call A_{γ} the positive part and B_{γ} the negative part of the coefficient of X^{γ}. From calculations given in [7], we have

$$
\begin{align*}
& A_{\gamma}=\sum_{\substack{\alpha \in \Lambda^{+}(p) \\
\alpha \preceq \gamma}} \frac{N!}{\left(\gamma_{1}-\alpha_{1}\right)!\cdots\left(\gamma_{n}-\alpha_{n}\right)!} \cdot a_{\alpha} \tag{1}\\
& B_{\gamma}=\sum_{\substack{\beta \in \Lambda^{-}(p) \\
\beta \preceq \gamma}} \frac{N!}{\left(\gamma_{1}-\beta_{1}\right)!\cdots\left(\gamma_{n}-\beta_{n}\right)!} \cdot a_{\beta} \tag{2}
\end{align*}
$$

We begin with some simple observations about forms in $\operatorname{Po}(n, d)$.
Proposition 1. Suppose $p \in \operatorname{Po}(n, d)$.

1. If u a point in the relative interior of a face F of Δ_{n} and $p(u)=0$, then p vanishes everywhere F. In particular, if $p(u)=0$ for u an interior point of Δ_{n}, then p is the zero form.
2. $Z(p) \cap \Delta_{n}$ is a union of faces of Δ_{n}.
3. If $\beta \in \Lambda^{-}(p)$, then for every proper nonzero face F of Δ_{n}, there is $\alpha \in \Lambda^{+}(p)$ so that $\alpha_{F} \preceq \beta_{F}$.

Proof. We note that (1) is easy (a proof is given in [8, §3] and [1, Prop. 2]) and (2) follows immediately from 1.

For (3), without loss of generality we can assume $F=F(\{1, \ldots, r\})$ with $1 \leq r<$ n. We have $N \in \mathbb{N}$ with $\left(\sum X_{i}\right)^{N} p \in \mathbb{R}^{+}[X]$. Let $\gamma=\left(\beta_{1}, \ldots, \beta_{n-1}, \beta_{n}+N\right) \in \mathbb{N}^{n}$, then $|\gamma|=N+d$ and $\beta \preceq \gamma$. Write the coefficient of X^{γ} in $\left(\sum X_{i}\right)^{N} p$ as $A_{\gamma}-B_{\gamma}$ as above, then since $\beta \preceq \gamma$, by (2), $B_{\gamma}>0$. Since the coefficient of X^{γ} in $\left(\sum X_{i}\right)^{N} p$ must be non-negative, this implies $A_{\gamma}>0$ and hence, by (1), there is $\alpha \in \Lambda^{+}(p)$ with $\alpha \preceq \gamma$. This in turn implies $\alpha_{F} \preceq \beta_{F}$, which proves (3).

Remark 1. The conditions in the proposition are necessary but not sufficient conditions for $p \in \operatorname{Po}(n, d)$. This follows from [1, Example 2] or [4, Example 5.1].

In [4], H.-N. Mok and W.-K. To give a sufficient condition for $p \in \operatorname{Po}(n, d)$ which is related to (3) in Proposition 1.

Theorem 1 ([4], Theorem 2). Suppose p is a form of degree d such that $p \geq 0$ on $\Delta_{n}, Z(p) \cap \Delta_{n}$ is a union of faces of Δ_{n}, and p satisfies the following property: For every face F of Δ_{n} with $F \subseteq Z(p)$ and each $\beta \in \Lambda^{-}(p)$, there is $\alpha \in \Lambda^{+}(p)$ such that $\alpha_{F} \prec \beta_{F}$. Then $p \in \operatorname{Po}(n, d)$.

This theorem will follow easily from our main theorem. The following example shows that the condition in the above theorem is not necessary.
Example. Let $p_{a}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=X_{1}^{4}+X_{2}^{4}+X_{1}^{2}\left(X_{3}^{2}-a X_{3} X_{4}+X_{4}^{2}\right)$, where $0<a \leq 2$. Then $p \geq 0$ on $\Delta_{4}, Z(p) \cap \Delta_{n}=F(\{1,2\}), \Lambda^{-}(p)=\{(2,0,1,1)\}$, and $\Lambda^{+}(p)=\{(4,0,0,0),(0,4,0,0),(2,0,0,2),(2,0,2,0)\}$. Hence all conditions of Proposition 1 hold. Note that there is no $\alpha \in \Lambda^{+}(p)$ with $\alpha_{F} \prec(2,0,1,1)_{F}$, where $F=F(\{1,2\})$, so that the condition of Theorem 1 doesn't hold.

If $\sum_{j=1}^{4} \gamma_{j}=N+4$, then the coefficient of $\frac{N!}{\gamma_{1}!\gamma_{2}!\gamma_{3}!\gamma_{4}!} X_{1}^{\gamma_{1}} X_{2}^{\gamma_{2}} X_{3}^{\gamma_{3}} X_{4}^{\gamma_{4}}$ in $\left(\sum_{j} X_{j}\right)^{N} p_{a}$ is

$$
\begin{gather*}
f_{a}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right):=\gamma_{1}\left(\gamma_{1}-1\right)\left(\gamma_{1}-2\right)\left(\gamma_{1}-3\right)+\gamma_{2}\left(\gamma_{2}-1\right)\left(\gamma_{2}-2\right)\left(\gamma_{2}-3\right) \tag{3}\\
+\gamma_{1}\left(\gamma_{1}-1\right)\left(\gamma_{3}\left(\gamma_{3}-1\right)+\gamma_{4}\left(\gamma_{4}-1\right)-a \gamma_{3} \gamma_{4}\right)
\end{gather*}
$$

where any factor of the type $\gamma_{i}-m$ which is negative is set to 0 .
We want to determine the smallest N so that for all such $\gamma, f_{a}(\gamma) \geq 0$. We first observe that

$$
\begin{aligned}
& f_{a}(2,3, k, k)=2\left(2 k(k-1)-a k^{2}\right)=2 k((2-a) k-2), \\
& f_{a}(3,3, k, k)=6\left(2 k(k-1)-a k^{2}\right)=6 k((2-a) k-2) .
\end{aligned}
$$

If $a=2$, then $f_{a}(3,3, k, k)<0$, so no N will ever work. Otherwise, assume $0<a<2$ and observe that $f_{a}(3,3, k, k)<0$ if

$$
k<\frac{2}{2-a}
$$

Thus, if $N=2 M$ and all coefficients are non-negative, we have

$$
2 M+4=6+2 k \Longrightarrow N=2 k+2 \geq 2+2\left\lceil\frac{2}{2-a}\right\rceil
$$

and if $N=2 M+1$ and all coefficients are non-negative, we have

$$
2 M+5=6+2 k \Longrightarrow N=2 k+1 \geq 1+2\left\lceil\frac{2}{2-a}\right\rceil
$$

Thus the smallest N satisfies the equation

$$
N \geq 1+2\left\lceil\frac{2}{2-a}\right\rceil
$$

A messy calculation, which we omit, shows that $p_{1} \in P o(n, d)$ for all $0<a<2$, and there is a smallest such $N=4(2-a)^{-1}+\mathcal{O}(1)$. In the last section, we will see that the first statement and a bound that is asymptotically the same follows from our main results.

3 Local Versions of Pólya's Theorem

For $\alpha \in \mathbb{N}$, let $\|\alpha\|$ denote $\frac{\alpha}{|\alpha|}$ and note that $\|\alpha\| \in \Delta_{n}$. The original proof of Pólya's Theorem is "coefficient by coefficient": For $p>0$ on Δ_{n}, a sequence of real polynomials p_{ϵ} is constructed which converge uniformly to p on Δ_{n}, such that the coefficient of X^{α} in $\left(\sum X_{i}\right)^{N} p$ is a positive multiple of $p_{\epsilon}(\|\alpha\|)$, where $\epsilon=\frac{1}{N+d}$. Using this technique, we can obtain "local" versions of the theorem, by which we mean the result for coefficients which correspond to exponents α such that $\|\alpha\|$ lies in a given closed subset of Δ_{n}. To prove our main theorem, we will write Δ_{n} as a union of closed subsets so that we can apply one of the local versions to each of the subsets.

The key to our local versions of Pólya's Theorem and the bounds we obtain is the simple observation that the main theorem in [7] generalizes immediately to subsets of Δ_{n} on which the form is positive.

If $|\alpha|=d$, define $c(\alpha):=\frac{d!}{\alpha_{1}!\cdots \alpha_{n}!}$. Suppose $p \in \mathbb{R}[X]$ is homogeneous of degree d, then write

$$
p(X)=\sum_{|\alpha|=d} a_{\alpha} X^{\alpha}=\sum_{|\alpha|=d} c(\alpha) b_{\alpha} X^{\alpha}
$$

and let $L(p):=\max _{|\alpha|=d}\left|b_{\alpha}\right|$. The following local result, which is in [6], is immediate from the proof of Theorem 1 in [7]:

Proposition 2. Suppose $S \subseteq \Delta_{n}$ is nonempty and closed and $p \in \mathbb{R}[X]$ is homogeneous of degree d such that $p(x)>0$ for all $x \in S$. Let λ be the minimum of p on S. Then for

$$
N>\frac{d(d-1)}{2} \frac{L(p)}{\lambda}-d
$$

and $\alpha \in \mathbb{N}^{n}$ such that $\|\alpha\| \in S$, the coefficient of X^{α} in $\left(X_{1}+\ldots+X_{n}\right)^{N} p$ is nonnegative.

The above theorem will give us an N with a bound for the region of the simplex away from the zeros. Then we will apply local results which work for closed subsets of Δ_{n} whose union contains the zero set of the form. We start with some notation for certain closed subsets of Δ_{n} containing subsets of a given face.

Definition 1. Let $F=F(I)$ be a face of Δ_{n}.

1. For $0<\epsilon<1$, let $\Delta(F, \epsilon)$ denote the following closed subset of Δ_{n} containing F :

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \in \Delta_{n} \mid \sum_{i \in I} x_{i} \leq \epsilon\right\}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \Delta_{n} \mid \sum_{i \in I^{c}} x_{i} \geq 1-\epsilon\right\}
$$

2. We need notation for closed subsets containing the "middle" of F, i.e., the part of F away from the lower dimensional faces. Given $0<\tau<1$ and $0<\epsilon<\tau$, let

$$
C(F, \epsilon, \tau):=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \Delta(F, \epsilon) \mid x_{i} \geq \tau-\epsilon \text { for } i \in I^{c}\right\}
$$

3. Given $0<\tau<1$, define the following closed subset of the relative interior of F :

$$
W(F, \tau):=\left\{\left(x_{1}, \ldots, x_{n}\right) \in F \mid x_{i} \geq \tau \text { for } i \in I^{c}\right\}
$$

Remark 2. It is easy to check that if F is a face of dimension $k \geq 2$, and F_{1}, \ldots, F_{k} are the subfaces of F of dimension $k-1$, then

$$
\Delta(F, \epsilon) \subseteq C(F, \epsilon, \tau) \cup \Delta\left(F_{1}, \tau\right) \cup \cdots \cup \Delta\left(F_{k}, \tau\right)
$$

The following proposition is a local result for closed neighborhoods of vertices of the simplex, which follows immediately from the proof of Proposition 2 in [6]. For $1 \leq i \leq n$, let v_{i} denote the i-th vertex of Δ_{n}, i.e., $v_{i}=F(I)$, where $I=$ $\{1, \ldots, i-1, i+1, \ldots, n\}$.

Proposition 3. Suppose p is a form of degree d such that $p \geq 0$ on Δ_{n}. Let $F=v_{i}$, and suppose that for every $\beta \in \Lambda^{-}(p)$ there is some $\alpha \in \Lambda^{+}(p)$ such that $\alpha_{F} \preceq \beta_{F}$. Then there is $\epsilon>0$ and $N \in \mathbb{N}$ such that for every $\gamma \in \mathbb{N}$ with $|\gamma|=N+\operatorname{deg} p$ and $\|\gamma\| \in \Delta(F, \epsilon)$, the coefficient of X^{γ} in $\left(\sum X_{i}\right)^{N} p$ is nonnegative.

In particular, if $p=\sum a_{\alpha} X^{\alpha}$, let c be the minimum of $\left\{a_{\alpha} \mid \alpha \in \Lambda^{+}(p)\right\}$, $d=\operatorname{deg}(p)$, and $U=\sum\left|a_{\alpha}\right|$, then this holds for

$$
\epsilon=\frac{c}{c+U}, \quad N>\frac{d(d-1)}{2} \frac{L(p)}{s}, \quad \text { where } \quad s=\frac{c}{2}\left(\frac{2 U}{c+2 U}\right)^{2}
$$

Finally, we need a localized Pólya's Theorem which holds on the closed subsets $C(F, \epsilon, \tau)$ defined above. This result, without the explicit bound, is a special case of [6, Proposition 1].

Lemma 1. Suppose $F=F(I)$ is a face of Δ_{n}, and $\phi, \psi \in \mathbb{R}[X]$ are forms of the same degree d such that

1. $\phi>0$ on the relative interior of F,
2. all monomials in ϕ have no factors X_{i} for $i \in I$, and
3. every monomial in ψ contains at least one factor X_{i} for some $i \in I$.

Given any $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{N}$ such that $\beta_{j}=0$ for all $j \in I^{c}$ and let $p=$ $X^{\beta}(\phi+\psi)$. Then for any $\tau \in \mathbb{R}$ with $0<\tau<1 / n$, there is $0<\epsilon<\tau$ and $N \in \mathbb{N}$ such that the coefficient of X^{α} in $\left(\sum X_{i}\right)^{N} p$ is nonnegative for any $\|\alpha\| \in C(F, \epsilon, \tau)$.

In particular, let λ be the minimum of ϕ on the closed subset $W(F, \tau / 2)$ of the relative interior of F, and let U be the sum of the absolute value of the coefficients of p. Then this holds for

$$
N>d(d-1) \frac{L(p)}{\lambda}-d
$$

and

$$
\epsilon<\min \left\{\frac{\lambda}{2 d \lambda+2 U}, \tau\right\}
$$

Proof. Let $q=\phi+\psi$. Claim: For ϵ and λ as given, $q \geq \lambda / 2$ on $C(F, \epsilon, \tau)$
Proof of claim: Fix ϵ with $0<\epsilon<\tau / 2$ and let $C=C(I, \epsilon, \tau)$. We want to bound ϕ and ψ on C. Given $x=\left(x_{1}, \ldots, x_{n}\right) \in \Delta(F, \epsilon)$ and suppose $\gamma \in \operatorname{supp}(\psi)$. Then $x_{i} \leq \epsilon$ for $i \in I$ and X^{γ} contains a factor X_{i} for some $i \in I$, hence X^{γ} evaluated at x is $\leq \epsilon$. It follows that $|\psi(x)| \leq U \epsilon$ on $\Delta(F, \epsilon)$. Since $C \subseteq \Delta(F, \epsilon)$, we have $\psi \geq-U \epsilon$ on C.

Given $x \in C$, we have $\sum_{j \in I^{c}} x_{j}=1-t$ for $t=\sum_{i \in I} x_{i} \leq \epsilon$. Define $a=\left(a_{1}, \ldots, a_{n}\right)$ by setting $a_{i}=\frac{x_{j}}{1-t}$ for $j \in I^{c}$ and $a_{i}=0$ for $i \in I$. Then $a \in F$ and for $j \in I^{c}$ we have $a_{j}=\frac{x_{j}}{1-t}>x_{j} \geq \tau-\epsilon \geq \tau / 2$, hence $a \in W$. Then, since ϕ is a form of degree d, $\phi(x)=(1-t)^{d} \phi(a) \geq(1-\epsilon)^{d} \lambda$.

Putting together the two bounds, we have for $x \in C$,

$$
q(x) \geq(1-\epsilon)^{d} \lambda-U \epsilon \geq(1-d \epsilon) \lambda-U \epsilon=\lambda-(d \lambda+U) \epsilon
$$

Hence with ϵ as given we have $q(x) \geq \lambda-\lambda / 2=\lambda / 2$, and the claim is proven.
Now, by Proposition 2, for the given N we have that the coefficient of X^{α} in $\left(\sum X_{i}\right)^{N} q$ is nonnegative for $\|\alpha\| \in C$. We just need to show that this still holds if we replace q by $p=X^{\beta} q$. Suppose $\gamma \in \operatorname{supp}\left(\left(\sum X_{i}\right)^{N} p\right)$ with $\|\gamma\| \in C$, then $\gamma=\alpha+\beta$ with $\alpha \in \operatorname{supp}\left(\left(\sum X_{i}\right)^{N} q\right)$. Since $\beta_{j}=0$ for $j \in I^{c}$, we have $\gamma_{j}=\alpha_{j}$ for $j \in I^{c}$. Then since $|\gamma| \geq|\alpha|$, it is easy to see that $\gamma \in C$ implies $\alpha \in C$. It follows that the coefficient of X^{α} in $\left(\sum X_{i}\right)^{N} q$ is nonnegative and therefore the coefficient of X^{γ} in $\left(\sum X_{i}\right)^{N} p$ is nonnegative, completing the proof.

Remark 3. The dependence of ϵ on τ is due to the fact that λ depends on τ.

4 Pólya's Theorem with Zeros

In this section we give necessary and sufficient conditions for a form to be in $\operatorname{Po}(n, d)$ and a bound on the exponent N needed. One condition is the necessary condition (3) from Proposition 1 for the faces of Δ_{n} in $Z(p)$. The second condition involves the positivity of certain forms related to p on the relative interior of the faces in $Z(p)$.

For a form p and a face F of Δ_{n}, the relation $\alpha_{F} \preceq \beta_{F}$ defines a partial order on $\Gamma^{+}(p)$. We say $\alpha \in \Lambda^{+}(p)$ is minimal with respect to F if α is a minimal element in this partial order, i.e., if there is no $\gamma \in \Lambda^{+}(p)$ such that $\gamma_{F} \prec \alpha_{F}$. We start with notation for certain subforms of p related to the elements minimal with respect to a face.

Definition 2. Suppose $p=\sum a_{\alpha} X^{\alpha} \in \mathbb{R}[X]$.

1. For $\Gamma \subseteq \operatorname{supp}(p), p(\Gamma)$ denotes the form $\sum_{\gamma \in \Gamma} a_{\gamma} X^{\gamma}$.
2. For $\alpha \in \operatorname{supp}(p)$ and a face F of Δ_{n}, define

$$
q(\alpha, F):=p\left(\left\{\gamma \in \operatorname{supp}(p) \mid \gamma_{F}=\alpha_{F}\right\}\right) / X^{\alpha_{F}} .
$$

Note that $q(\alpha, F)$ is a form in the variables $\left\{X_{j} \mid j \in I^{c}\right\}$, where $F=F(I)$, and $X^{\alpha_{F}} q(\alpha, F)$ is a subform of p.

Lemma 2. Suppose $p \in \operatorname{Po}(n, d)$ and F is a face of Δ_{n}. Then for every $\alpha \in \Lambda^{+}(p)$ which is minimal with respect to F, the form $q(\alpha, F)$ must be strictly positive on the relative interior of the face F.

Proof. Suppose $F=F(I)$ and set $q:=q(\alpha, F)$. Since $p \in P o(n, d)$, there exists $N \in \mathbb{N}$ such that $\left(\sum_{i=1}^{n} X_{i}\right)^{N} p \in \mathbb{R}^{+}[X]$. We claim that $\left(\sum_{j \in \bar{I}} X_{j}\right)^{N} X^{\alpha_{F}} q \in \mathbb{R}^{+}[X]$.

Suppose γ is in the support of $\left(\sum_{j \in \bar{I}} X_{j}\right)^{N} X^{\alpha_{F}} q$, then by the definition of q, $\gamma_{F}=\alpha_{F}$. Consider the coefficient of X^{γ} in $\left(\sum_{i=1}^{n} X_{i}\right)^{N} p$ and let A_{γ} be the positive part and B_{γ} the negative part, as in (1) and (2) in $\S 2$. Contributions to A_{γ} come from $\delta \in \Lambda^{+}(p)$ with $\delta \preceq \gamma$, which implies $\delta_{F} \preceq \gamma_{F}=\alpha_{F}$. Since α is minimal with respect to F, it follows that the only contributions to A_{γ} come from $\delta \in \Lambda^{+}(p)$ with $\delta_{F}=\alpha_{F}$. Since all such δ are in $\operatorname{supp}\left(X^{\alpha_{F}} q\right)$, it follows that A_{γ} is the positive part of the coefficient of X^{γ} in $\left(\sum_{j \in \bar{I}} X_{j}\right)^{N} X^{\alpha_{F}} q$. Since $X^{\alpha_{F}} q$ is a subform of p, the negative part of the coefficient of $\left(\sum_{j \in \bar{I}} X_{j}\right)^{N} X^{\alpha_{F}} q$ is clearly $\leq B_{\gamma}$ and it follows that the coefficient of X^{γ} in $\left(\sum_{j \in \bar{I}} X_{j}\right)^{N} X^{\alpha_{F}} q \geq A_{\gamma}-B_{\gamma} \in \mathbb{R}^{+}$.

From the claim it follows that $\left(\sum_{j \in \bar{I}} X_{j}\right)^{N} q \in \mathbb{R}^{+}[X]$. Since q is a form in $\left\{X_{j} \mid j \in \bar{I}\right\}$, this means that q satisfies Pólya's Theorem on the simplex $F(I)$. Hence, by Proposition 1, q is strictly positive on the relative interior of F.

Theorem 2. Given p, a form of degree d, such that $p \geq 0$ on Δ_{n} and $Z(p) \cap \Delta_{n}$ is a union of faces. Then $p \in P o(n, d)$ if and only if for every face $F \subseteq Z(p)$ the following two conditions hold:

1. For every $\beta \in \Lambda^{-}(p)$, there is $\alpha \in \Lambda^{+}(p)$ so that $\alpha_{F} \preceq \beta_{F}$.
2. For every $\alpha \in \Lambda^{+}(p)$ which is minimal with respect to F, the form $q(\alpha, F)$ is strictly positive on the interior of F.

Proof. Condition (1) is necessary by Proposition 1 and condition (2) is necessary by Lemma 2.

Suppose the conditions hold for $p=\sum a_{\alpha} X^{\alpha} \in \mathbb{R}[X]$. Assuming p is not identically zero, by Lemma 1 , any face in $Z(p) \cap \Delta_{n}$ has dimension $\leq n-2$. For a closed set of Δ_{n} which does not contain the zero set, we can apply Proposition 2 , hence the theorem will follow easily from the following claim:
Claim: For every face F contained in $Z(p) \cap \Delta_{n}$ we can find $0<\epsilon<1$ and $N \in \mathbb{N}$ so that for any $\theta \in \mathbb{N}^{n}$ with $|\theta|=N+d$ and $\|\theta\| \in \Delta(I, \epsilon)$, the coefficient of X^{θ} in $\left(\sum_{i=1}^{n} X_{i}\right)^{N} p$ is nonnegative.
Proof of claim: By induction on the dimension of F. If the dimension is 1 , then $\alpha_{F} \preceq \beta_{F}$ with $\alpha \neq \beta$ implies $\alpha_{F} \prec \beta_{F}$, and we are done by Proposition 3 .

Now suppose F has dimension $k, 2 \leq k \leq n-2$, and the claim is true for all subfaces of F of dimension $k-1$. Let τ be the minimum of $1 / n$ and the ϵ 's that occurs among these subfaces and \tilde{N} the maximum of the N 's.

By assumption, for each $\beta \in \Lambda^{-}(p)$, there is $\alpha \in \Lambda^{+}(p)$ such that $\alpha_{F} \preceq \beta_{F}$. Clearly there is such an α which is minimal with respect to F. Order the set of $\alpha \in \Lambda^{+}(p)$ which are minimal with respect to F in some way and, one at a time, define forms ψ_{α} as follows: Let Γ_{α} be the set of $\beta \in \Lambda^{-}(p)$ such that $\alpha_{F} \prec \beta_{F}$ and β is not contained in any previously defined Γ_{α}. Now let $\psi_{\alpha}=p\left(\Gamma_{\alpha}\right) / X^{\alpha_{F}}$. Then ψ_{α} is a form and every monomial of ψ_{α} contains at least one variable X_{i} for $i \in I$.

Now, for each α minimal with respect to F, let $\phi_{\alpha}=q(\alpha, F)$ and consider the subform $X^{\alpha_{F}}\left(\phi_{\alpha}+\psi_{\alpha}\right)$ of p. By assumption, $q(\alpha, F)$ is strictly positive on the interior of F. Hence $\phi_{\alpha}, \psi_{\alpha}$, and α_{F} satisfy the conditions of Proposition 1 and thus there is some $N_{\alpha} \in \mathbb{N}$ and $\epsilon_{\alpha}>0$ such that the coefficient of X^{γ} in $\left(\sum X_{i}\right)^{N_{\alpha}} X^{\alpha_{F}}\left(\phi_{\alpha}+\psi_{\alpha}\right)$ is nonnegative for all $\gamma \in \mathbb{N}^{n}$ with $\|\gamma\| \in C\left(F, \epsilon_{\alpha}, \tau\right)$.

By construction, for every $\beta \in \Lambda^{-}(p)$, the term $a_{\beta} X^{\beta}$ in p occurs in $X^{\alpha_{F}}\left(\phi_{\alpha}+\psi_{\alpha}\right)$ for some α minimal with respect to F. Hence we can write

$$
p=\sum X^{\alpha_{F}}\left(\phi_{\alpha}+\psi_{\alpha}\right)+\tilde{p}
$$

where the sum is over that set of α 's minimal with respect to F, and \tilde{p} has only positive coefficients. Let ϵ be the minimum of the ϵ_{α} 's and $\tau / 2$, and let M be the maximum of the N_{α} 's, then for $\gamma \in \operatorname{supp}\left(\left(\sum X_{i}\right)^{M} p\right.$ with $\gamma \in C(F, \epsilon, \tau)$, the coefficient of X^{γ} is nonnegative. Since $\Delta(F, \epsilon) \subseteq C(F, \epsilon, \tau) \cup \Delta\left(F_{1}, \tau\right) \cup \cdots \cup \Delta\left(F_{k}, \tau\right)$, the claim now follows.

Now write $Z(p) \cap \Delta_{n}$ as a union of faces $F_{1} \cup \cdots \cup F_{l}$, where $F_{i} \nsubseteq F_{j}$ for any $i \neq j$, and apply the claim to each F_{i}, say we have that the claim holds with ϵ_{i} and N_{i}. Let S be the closure of $\Delta_{n} \backslash \cup_{i=1}^{l} \Delta\left(F, \epsilon_{i}\right)$, then $p>0$ on S. By Lemma 2 there
is M such that for every $\theta \in \mathbb{N}$ with $\|\theta\| \in S$ the coefficient of X^{θ} in $\left(\sum X_{i}\right)^{M} p$ is nonnegative. Taking the maximum of M and the N_{i} 's, we are done.

The sufficient condition for $p \in \operatorname{Po}(n, d)$ given in [4] follows easily from the theorem.

Corollary 1. Suppose p is a form of degree d with $p \geq 0$ on Δ_{n} and $Z(p) \cap \Delta_{n}$ is a union of faces. Suppose further that for every face $F \subseteq Z(p)$ and every $\beta \in \Lambda^{-}(p)$, there exists $\alpha \in \Lambda^{+}$such that $\alpha_{F} \prec \beta_{F}$.
Proof. If the given condition holds for p, then the first condition of Theorem 2 holds trivially. For every α which is minimal with respect to F, by the given condition, there is no $\beta \in \Lambda^{-}(p)$ such that $\beta_{F}=\alpha_{F}$. Hence every $q(\alpha, F)$ has only positive coefficients and thus must be strictly positive on the interior of F. By Theorem 2, this implies $p \in \operatorname{Po}(n, d)$.

We now give a bound on the exponent N needed in Theorem 2. The bound will depend on the degree of p, the size of the coefficients, and constants which are defined recursively in terms of minimums of the $q(\alpha, F)$'s on a certain closed subset of the interior of F. We begin with the definition of these constants.

Definition 3. Suppose $p \in \sum a_{\alpha} X^{\alpha}$ is a form of degree d and F is a face of Δ_{n} such that either F is a vertex or p satisfies (2) of Theorem 2 on every subface G (including $G=F$), i.e., for every $\alpha \in \Lambda^{+}(p)$ which is minimal with respect to G, the form $q(\alpha, G)$ is strictly positive on the interior of G. Suppose $\operatorname{dim} F=k$, then we define constants $\epsilon_{i}(F), \lambda_{i}(F)$ for $i=1, \ldots, k$, recursively as follows:

$$
\epsilon_{1}=\min \left\{\frac{c}{c+U}, \frac{1}{n}\right\}, \quad \lambda_{1}=\frac{c}{2}\left(\frac{2 U}{c+2 U}\right)^{2},
$$

where $c=\min \left\{a_{\alpha} \mid \alpha \in \Lambda^{+}(p)\right\}$ and $U=\sum_{\alpha \in \operatorname{supp}(p)}\left|a_{\alpha}\right|$.
For $2 \leq i \leq k$, for each subface G of F of dimension i, let $\lambda(G)$ be the minimum over all α minimal with respect to G of the minimum of $q(\alpha, G)$ on $W\left(G, \epsilon_{i-1} / 2\right)$. Now let λ_{i} be the minimum over all G 's of the $\lambda(G)$'s and choose

$$
\begin{equation*}
\epsilon_{i}<\min \left\{\frac{\lambda_{i}}{2 d \lambda_{i}+2 U}, \epsilon_{i-1}\right\} . \tag{4}
\end{equation*}
$$

Finally, let $\epsilon(F)=\epsilon_{k}(F)$ and $\lambda(F)=\lambda_{k}(F)$.
Theorem 3. Given $p \in \operatorname{Po}(n, d)$, then $Z(p) \cap \Delta_{n}$ is a union of faces of Δ_{n}. Write $Z(p) \cap \Delta_{n}=F_{1} \cup \cdots \cup F_{l}$, where each F_{i} is a face and $F_{i} \nsubseteq F_{j}$ for all $i \neq j$. Let ϵ be the minimum of $\left\{\epsilon\left(F_{i}\right)\right\}$ and λ the minimum of $\left\{\lambda\left(F_{i}\right)\right\}$. Then $\left(\sum X_{i}\right)^{N} p \in \mathbb{R}^{+}[X]$ for

$$
N>\frac{d(d-1)}{2} L(p) \cdot \max \left(\frac{1}{\lambda}, \frac{1}{\theta}\right),
$$

where θ is the minimum of p on the closure of $\Delta_{n} \backslash\left(\Delta\left(F_{1}, \epsilon\right) \cup \cdots \cup \Delta\left(F_{l}, \epsilon\right)\right)$.

Proof. This follows from the proof of Theorem 2 and the bound in Lemma 1.
Example. We continue with our example from Section 2. For $0<a \leq 2$, we have

$$
p=X_{1}^{4}+X_{2}^{4}+X_{1}^{2} X_{3}^{2}+X_{1}^{2} X_{4}^{2}-a X_{1}^{2} X_{3} X_{4} .
$$

Recall $Z(p) \cap \Delta_{n}$ is the face $F=F(\{1,2\})$. There are two elements of Λ^{+}which are minimal with respect to $F:(2,0,2,0)$ and $(2,0,0,2)$. In both cases, the form $q(\alpha, F)=q:=X_{3}^{2}+X_{4}^{2}-a X_{3} X_{4}$. Note that $q>0$ on the relative interior of F iff $a<2$ and hence Theorem 2 says that $p \in \operatorname{Po}(n, d)$ iff $a<2$, as claimed in Section 2.

We now compute the bound from Theorem 3. We are interested in the behavior as $a \rightarrow 2$, hence there is no harm in assuming $a \geq 1$. The first step is to compute the constants $\epsilon=\epsilon(F)$ and $\lambda=\lambda(F)$ from Definition 3. We have $L(p)=1, c=1$, and $U=4+a$, hence $\epsilon_{1}=\frac{1}{5+a}$ and $\lambda_{1}=\frac{1}{2}\left(\frac{8+2 a}{9+2 a}\right)^{2}$.

Next we need to find λ_{2}, which is the minimum of q on $W\left(F, \epsilon_{1} / 2\right)$. It's easy to check q has a local minimum of $\frac{2-a}{4}$ at $(0,0,1 / 2,1 / 2)$ and this is the global minimum. Hence $\lambda(F)=\lambda_{2}=\frac{2-a}{4}$. We need ϵ_{2} satisfying (4), suppose we have chosen an appropriate $\epsilon_{2}=t$. Now we need to find θ, the minimum of p on S, the closure of $\Delta_{4} \backslash \Delta(F, t)$. There are no critical points in the interior of Δ_{n}, hence the minimum occurs on the boundary of S. Suppose $X_{3}+X_{4}=t$ and $X_{1}+X_{2}=1-t$. An easy calculation shows that the minimum of $X_{3}^{2}-a X_{3} X_{4}+X_{4}^{2}$ is $\frac{(2-a) t^{2}}{4}$ and this occurs when $X_{3}=X_{4}=t / 2$. Thus we need to find the minimum of $X_{1}^{4}+X_{2}^{4}+X_{1}^{2}\left(\frac{(2-a) t^{2}}{4}\right)$. Clearly, the $X_{1}^{4}+X_{2}^{4}$ term will dominate, and for small enough t, we will have $\max \left(\frac{1}{\lambda}, \frac{1}{\theta}\right)=\frac{4}{2-a}$, which yields the bound

$$
N>\frac{24}{2-a},
$$

which, as $a \rightarrow 2$, is asymptotically the same as the smallest exponent $4(2-a)^{-1}+$ $\mathcal{O}(1)$ claimed in Section 2.

References

[1] M. Castle, Pólya's Theorem with Zeros, Ph.D. thesis, Emory University, 2008.
[2] E. de Klerk and D. V. Pasechnik, Approximation of the stability number of a graph via copositive programming, SIAM Journal on Optimization 12 (2002), no. 4, 875-892.
[3] C.W.J. Hol and C.W. Scherer, Matrix sum-of-squares relaxations for robust semidefinite programs, Math. Programming 107 (2006), 198-211.
[4] H.-N. Mok and W.-K. To, Effective Pólya semi-positivity for non-negative polynomials on the simplex, Journal of Complexity 24 (2008), no. 4, 524-544.
[5] G. Pólya, Über positive Darstellung von Polynomen vierteljschr, Naturforsch. Ges. Zürich 73 (1928), 141-145, in Collected Papers 2 (1974), MIT Press, 309-313.
[6] M. Castle, V. Powers, and B. Reznick, A quantitative Pólya's Theorem with zeros, Journal of Symbolic Computation 44 (2009), no. 9, 1285 - 1290, Effective Methods in Algebraic Geometry.
[7] V. Powers and B. Reznick, A new bound for Pólya's Theorem with applications to polynomials positive on polyhedra, Journal of Pure and Applied Algebra 164 (2001), no. 1-2, $221-229$.
[8] V. Powers and B. Reznick, A quantitative Pólya's Theorem with corner zeros, Proceedings of the 2006 International Symposium on Symbolic and Algebraic Computation (J.-G. Dumas, ed.), ACM Press, 2006, pp. 285-290.
[9] S. Burgdorf, C. Scheiderer, and M. Schweighofer, Pure states, nonnegative polynomials and sums of squares, preprint.
[10] M. Schweighofer, An algorithmic approach to Schmüdgen's Positivstellensatz, Journal of Pure and Applied Algebra 166 (2002), no. 3, 307 - 319.

[^0]: *Department of Mathematics and Statistics, Kennesaw State University, Kennesaw, GA 30144. Email: mfc7379@kennesaw.edu
 ${ }^{\dagger}$ Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322. Email: vicki@mathcs.emory.edu.
 ${ }^{\ddagger}$ Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801. Email: reznick@math.uiuc.edu

