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Binding affinity (BA) prediction is important for drug discovery and protein
engineering. This paper presents the development and comparative analysis of

Deep Learning Models for Protein-Protein Binding Affinity Prediction
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The CNN model and the transformer model have their own advantages.

Protein-Protein Interactions (PPIs) are physical

ss: contact between two or more protein molecules. For the CNN model, it can handle full data without sacrificing performance. However, it
B 8:: Binding affinity (BA) - the strength of interaction takes much more time to preprocess the features from the protein sequences.

;i: Kd (dissociation constant): The transformer model can achieve the same level of accuracy as the CNN model with

::: Lower value — stronger binding no big predictive errors for each protein. However, it requires the model to run on less

4 Higher value — weaker binding Figure 2: Transformer data, which removes some unusually long protein sequences.
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* K, is collected from PDBbind, which is based on
Protein Data Bank
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