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Abstract

Genetic data like mRNA, mIRNA, and DNA methylation provide valuable insights
iInto disease mechanisms and improve diagnostic accuracy. Combining these
data types enables a multi-dimensional approach to biomarker discovery, which

Biomedical Deep Learning - A staged approach using trustworthy deep learning for
multi-omics data classification

Base Omics Selection
- The best base omics for BRCA, ROSMAP, LGG are mRNA, for

Modality Usage Percentage

- The percentage of each modality usage for each dataset (BRCA,
ROSMAP, LGG, KIPAN).

can lead to earlier, more precise diagnoses. However, integrating multiple KIPAN i1s DNA methylation. EEENIE MRNA | 0.95% MRNA | miRNA | 65.71% MRNA | methy | miRNA | 33.33%
modalities raises clinical costs. Unlike past methods, our model selectively uses BRCA MRNA | 0.38% MRNA | methy | 0.38% MRNA | methy | miRNA | 99.24%
partial modalities when feasible. UtiIiziFr)lg subjective logic and trustworth;/ deep | Dataset | Features | Classifier dims___Accuracy | Flweighted | _Flmacro | Uncertainty __ LGG MRNA | 0.66% MRNA | miRNA | 99.34% MRNA | methy | miRNA | 0%
learning in a staged approach, we predict disease risk. Our research developed i w—ry et il S i e KIPAN methy | 0.51% MRNA | methy | 98.48% MRNA | methy | miRNA | 1.02%
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perception layer for single-view classification, and created methods to quantify BRCA MRNA, methy 1024-512-256 0.8168 0.8161 0.7723 0.1910
and manage uncertainty in incomplete multi-omics integration. SR B Gl 23280 LLIET L7 06752 DA - The feature performance example based on ROSMAP and BRCA dataset.
BRCA methy-miRNA 512-256-128 0.7443 0.7059 0.5634 0.4364
. KIPAN MRNA 512-512-256 0.9645 0.9612 0.9157 0.0675 Importance Scores by Feature Name on ROSMAP dataset Importance Scores by Feature Name on BRCA dataset
| N t ro d U Ct Tela! KIPAN mehy 1024-512-256 1.0 1.0 1.0 0.0966 '"H”TEF:%E_IEE
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Omics research (genomics, transcriptomics, proteomics, etc.) has transformed o L —— - . e E— TS
! ! 1 ) KIPAN MRNA, miRNA 1024-512-256 0.9848 0.9843 0.9669 0.0181 SA .
understanding of complex biological systems, supporting breakthroughs in KIPAN methy-miRNA 256-128-32 1.0 1.0 1.0 0.0639 CDC25B|994
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biomarker discovery and personalized medicine. Single-omics approaches
often miss complex biological interactions, limiting their ability to fully capture
disease mechanisms. Multi-omics integration combines diverse data,
enhancing insights by providing a holistic view; for example, combining :
genomics and proteomics uncovers regulatory mechanisms and improves MCM|4175
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ROSMAP MRNA, methy 1024-512-256 0.8571 0.8598 0.8573 0.1440

predictions in diseases like cancer. Despite its advantages, multi-omics faces

_ _ _ _ ) ROSMAP MRNA, miRNA 256-256-128 0.8667 0.8679 0.8671 0.3765
challenges, including data heterogeneity, computational demands, and high ROSMAP methy-miRNA 5c6.128.3 p— y— — P—
costs. This study introduces a staged approach for selectively integrating LGG MRNA 256-256-128 0.8289 0.8375 0.8281 0.4317 ns T S 1 15 20
mMRNA, DNA methylation, and microRNA data based on predictive uncertainty, LGG mehy 256-128-64 0.8026 0.80 0.8035 0.6951 AN SREGE e
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data use and enabling a more efficient multi-omics analysis tailored to specific ,
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clinical needs. In this study, we introduced a novel staged deep learning approach that

achieves low-cost, high-performance classification across various disease
datasets through a phased integration of multi-omics data. Based on our
experimental results, we observed that most datasets achieved high-
performance predictions even with limited omics data, while still ensuring

Highest Accuracy Multi-omics Selection

- The best performance for multi-omics combination based on each

dataset (BRCA, ROSMAP, LGG, KIPAN).
enhanced predictive accuracy for integrated multi-omics data. Specifically, in
| Dataset | Features | (Classifierdims | Accuracy | Flweighted | Flmacro | Uncertainty _ stage 2, the ROSMAP dataset used 65.71% of the data with an accuracy of
1.0 1.0 1.0

KIPAN mehy 1024-512-256 0.0966 0.8857. The LGG dataset used 99.34% of the data in stage 2, achieving an

Materials and Methods

In this section, we introduce SATD for AD diagnosis, which is designed as a
binary classification task. An overview of SGUQ Is shown in Figure 1.
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Accuracy & Threshold Determination

- The best uncertainty thresholds(threshold 1 and threshold 2) based
on the selected result performance.

Flweighted | _Flmacro | __Bestthreshold 1 Best threshold 2

Final label
prediction
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