
Performance Analysis of PQC KEM Algorithms
Abstract

Dillon Horton, Gage Standard, Jose Gutierrez

Prof. Manohar Raavi

UR-089

Within the next twenty years or so experts predict that we will have

quantum computers which will make certain kinds of encryption that we rely on

ineffective and vulnerable to malicious entities. Post quantum computing (PQC)

algorithms fill in that security gap that classical encryption algorithms can not. A

particular category of PQC algorithms are key exchange mechanism (KEM)

algorithm. The goal of these algorithms is to securely generate a shared

symmetric key which can be used for encrypting future communication

between the hosts. An important use case for these algorithms is in securing

the Transport Layer Security protocol (TLS) against quantum adversaries. Due

to the widespread use of TLS, it is critical that any new standard use PQC

algorithms which are both efficient and secure. To this end we test each of the

PQC KEM algorithms provided by oqs-provider library to compare their

performance impact on the TLS handshake.

Analysis

Results

PQC Algorithms

Our work measures the performance of the round 4 PQC KEM algorithm

submissions, as well as the impact each algorithm had on the performance

of the TLS handshake. Overall, the Kyber and MLKEM algorithms seem like

the best choice performance wise for TLS. Each of the other algorithms had

some area of weakness. Particularly, the more data-intensive algorithms will

likely see worse performance under poor network conditions. Future work

could include testing hybrid KEM algorithms which try to use the different

strengths of KEM algorithms to make the process more efficient.

Post-Quantum Cryptographic algorithms are algorithms that are safe

from attacks by quantum computers. These PQC algorithms are tested

in rounds by NIST with the current round being the 4th. In figure 1, the

security levels presented by NIST can be observed. The algorithms that

are round 4 candidates are presented in figure 2. By implementing these

algorithms, the goal is to find the most optimized and efficient

PQC algorithm.

• D. Herman, C. Googin, X. Liu, Y. Sun, A. Galda, I. Safro, M. Pistoia, and Y.

Alexeev, "Quantum computing for finance," Nature Reviews Physics, vol. 5, no.

8, p. 450-465, Jul. 2023.|Online|. Available: http://dx.doi.org/10/1038/s42254-

023-00603-1

• OpenSSL Foundation, Inc. “OpenSSL.”, www.openssl.org/.

• Open-Quantum-Safe. “Open-Quantum-Safe/OQS-Provider: Openssl 3 Provider

Containing Post-Quantum Algorithms.” GitHub, github.com/open-quantum-

safe/oqs-provider.

• P. Schwabe D. Stebila, and T. Wiggers, “Post-quantum tls without

handshake signatures,” Cryptology ePrint Archive, Paper 2020/534,

2020, https://eprint.iacr.org/2020/534. [Online]. Avaliable:

https://eprint.iacr.org/2020/534

• R. P. Feynman, "Quantum mechanical computers," Found. Phys. Vol. 16, no.

6, pp. 507-531,Jun 1986.

We'd like to thank our faculty advisor, Dr. Manohar Raavi for all his help on this

project. We'd also like to thank our Senior Project Professor Sharon Perry for

helping us push across the finish line.

• Dillon Horton - dhorto23@students.kennesaw.edu

• Gage Standard - tstanda2@students.kennesaw.edu

• Jose Gutierrez – jgutie14@students.kennesaw.edu

System design

Acknowledgments

Contact Information

References

A. Key Generation.

Figure 4. the number of cryptographic operations per second each tested

PQC algorithm can achieve at different levels of security

B. Encapsulation. C. Decapsulation.

Figure 5. Performance of TLS Handshake under different PQC algorithms

System Design Continued

B. Bandwidth Usage.A. Handshake.

Conclusions

Figure 4 shows the individual performance of each tested PQC KEM

algorithm's cryptographic operations on a logarithmic scale. Overall, Kyber

and MLKEM see the best performance with the fastest key generation,

encapsulation, and decapsulation. HQC performed worse in all categories.

Figure 5 shows the performance of the TLS handshake with 5a

measuring the handshake duration and 5b measuring the amount of data

that needed to be sent and received for the handshake. Each of the

algorithms saw relatively comparable performance for handshake duration,

besides HQC which saw performance degradation at higher security levels.

As for bandwidth usage, the Kyber and MLKEM algorithms once again saw

the best performance while FrodoKEM saw the worst. While each of these

handshake sizes is small (5-50kb), The large number of handshakes a

service like a web server performs could affect network traffic levels.

Figure 1. NIST level security Figure 2. NIST level 4 candidates

The algorithms from figure 2 that are being implemented include: HQC

a Hamming Quasi-Cyclic approach, BIKE a Quasi-Cyclic Moderate Density

Parity-Check, Kyber a LWE problem over modular lattices, ML a LWE problem

over modular lattice, and Frodo a LWE problem. Each of these in the figure are

associated with a public key, secret key, and ciphertext size for each version.

Key Words:

NIST (National Institute of Standards and Technology)

LWE (Learning with Errors)

Figure 2. Overview of TLS1.3 handshake experiment

We implement our performance benchmarking using the Openssl and liboqs

libraries. Openssl is a C library which provides an implementation of TLS while

liboqs allows us to integrate the PQC algorithms into OpenSSL. The design of

this protocol can be seen in Figure 2, the TLS handshake uses KEM algorithms

as part of three operations. The first is key generation, this is done by the client

which generates the KEM key pair and sends the public key to the server which

uses as part of the next operation, encapsulation. The server uses the public key

to encrypt the AES key data and send it back to the client. The client performs

decapsulation which decrypts the ciphertext to obtain the shared symmetric key.

Our experiment runs two programs, a client and a server which conduct a TLS

1.3 handshake and gather data on the key generation, encapsulation, and

decapsulation. We also gather data on the overall performance of the TLS

handshake under each algorithm. We test each algorithm at all 3 of its security

levels

	Slide 1: Performance Analysis of PQC KEM Algorithms

