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In this study we investigate the performance of Deep Q-Networks utilizing
Convolutional Neural Networks (CNNs) and Transformer architectures across 3
different Atari Games. The advent of DQNs have significantly advanced
Reinforcement Learning, e_nablln? agents to directly learn owlmal policy from
high dimensional sensory inputs from pixel or RAM data. While CNN based
D%Ns have been extensively studied and deployed in various domains
Transformer based DQNSs are relatively unexplored. Our research aims to fill this
gap by benchmarking the performance of both DCQNs and DTQNSs across the
Atari ?ames' Asteroids, Space Invaders and Centipede. We find that
Transtormer based Q-Networks

We can determine that Transformers struggle in the 35-40 million parameter
range because of the dimensionality of the input frames. With a strict restriction
on using convolutions, it becomes difficult to reduce the features to the
embedding dimension without significant loss of information.
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Over 10000 Episodes it appears that the Transformer model only recognizes
changes in the pixels on the linear plane directly above the position of the Agent.
o This can be evidenced by the tendency to shoot faster when there is a target
GTrXL (Seli-Attention ] . ,
and FFN Gating) overhead but not dodging, which’s effects are exasperated by the reward
function not applying explicit penalties for losing lives/taking damage.

GTrXL (Self-Attention
and FFN Gating)

We trained the DTQN Centipede Agent using the huber loss function and the
DTON Asteroids Agent using MSE, we predict that huber loss Is not valid for
Transformer-based Q-Networks without pretraining on object recognition.

Introduction —

 Reinforcement Learning (RL) has undergone a revolution with Deep Q-Networks

(DQNs), which enable agents to derive optimal strategies directly from complex, e _ _
high-dimensional inputs like game pixels. Initially powered by Convolutional _ o The Transformer only outperforms the CNN In the gam_e of _Centlpgde_ _over
Neural Networks (CNNs) and achieving remarkable performance across a variety s et 10000, based on the reward curve and gameplay observation without significant

policy change the CNN will converge on a similar strategy to the Transformer, as

of Atari games, DQNs have now expanded to integrate Transformer | _ _ _ |
standing still proves to yield the highest points.

architectures—still under-researched in RL.
* Inour study, we leveraged the Arcade Learning Environment and OpenAl Gym to

benchmarks to variants of the DQN; The common CNN-based DCQN and the ZF | 4—[”% ﬂ erab < _|_ T~ The VIT implementation is 5 tumes slower than the Traditional CNN
Transformed-based DTQN; across three classic Atari games: Asteroids, Space ] e/ A\ e\ Implgmentatlon, and the Linear Projection model Is twice as slow as the
Invaders and Centipede. Our aim is to explore the potential of Transformer SV ) Traditional CNN.
architectures in RL without the aid of CNNs, RNNs or other recurrent structures ’ B o o
like GRU. z \ The Transformer model is disadvantaged at the 35-40 million parameter range
. We used both a ViT and Linear Projection based Q-Networks \ because patch embedding creates a dimension of 52000 to be reduced to the
: \\ embedding size of the Gated Transformer. Linear Projection results In a
Research Question (S) . dimension of 28224. We defined a Transformer based Q-Network with CNN and
~ I GRU gati d trained dditional Centipede Agent tperforming both
. . L L : gating and trained an additional Centipede Agent, outperforming bo
Why are Transformers rarely used as the architecture in Deep-Q-Networks? : ; : : -
. . Agents across all metrics except 3 times slower than the CNN Implementation.
How do CNN and Transformer based DQNs match up in the 35-40 Million o ww w s am sae ome w0 w0 w0 oom J P P

7 Run + Smoothed Value Step Relative ‘ =
Parameter range” o oo ok.ceripd Contact Information
DTON_10k_Centipede 136.2676 290.4124 10,000 3.052 day
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