
Faster Inequivalence Testing Using Robustness
Abstract

Author: Emily Jackson – ejack150@students.kennesaw.edu

Advisor: Arthur Choi – achoi13@kennesaw.edu

UR-70

We propose a new method for quickly testing the 

inequivalence of two Boolean functions, when one function 

is represented as an ordered binary decision diagram 

(OBDD), and the other is represented in conjunctive normal 

form (CNF). Our approach is based on a notion of classifier 

robustness from the fields of explainable AI (XAI) and 

adversarial machine learning. In particular, we show that 

two Boolean functions that are very similar in terms of their 

truth values, can be very different in terms of their 

robustness, which in turn, provides a witness to their 

inequivalence. A more efficient approach to inequivalence 

testing has an impact on the development of more efficient 

model counters and knowledge compilers. In turn, such 

developments facilitate advances in explainable AI and 

adversarial ML.

Inequivalence With RobustnessCompiling Neurons

Adversarial ML and Explainable AI

As shown above, neurons in a neural network, provided they have binary inputs and step activation 

functions, can be compiled down to Boolean functions, shown here as a decision graph. The reason 

for this compilation is that Boolean functions generally have outputs that are much easier to explain 

relative to a neural network. If we’re able to represent every neuron in a network as a Boolean 

function, then the whole network is equally representable as a Boolean function. However, this 

process of model compilation becomes more and more time consuming as the size of the neural 

network increases.

Over the past ten years, neural networks have drastically 

improved their ability to perform tasks like image 

classification and object detection. However, we’ve learned 

from adversarial machine learning that many of the 

classifications made by modern neural networks are in fact 

very fragile. For instance, strategically placing black and 

white stickers on a stop sign was enough to fool one deep 

neural network into thinking it was a 45 MPH speed limit 

sign. Examples like the stop sign show how important it is 

to be able to explain decisions made by artificial 

intelligence. These explanations, in turn, will provide a 

better understanding of important notions like classification 

robustness.

[Shi et al., 2020] Shi, W., Shih, A., Darwiche, A., and Choi, A. (2020). On tractable representations of binary 

neural networks. In Proceedings of the 17th International Conference on Principles of Knowledge 

Representation and Reasoning (KR).

[Shih et al., 2018] Shih, A., Choi, A., and Darwiche, A. (2018). A symbolic approach to explaining Bayesian 

network classifiers. In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI).

I’d like to thank my advisor, Dr. Choi, my two initial collaborators, Faye 

Le and Alex Drouillard, Professor Sharon Perry, Dr. Sanghoon Lee, 

and finally, KSU, for fostering the growth of undergraduate research at 

the university.

Acknowledgments

References

a neuron’s decision graph (integer weights)a neural network
(binary inputs + 
step activations)

a neuron
(binary inputs + 
step activations)

A B C



w2w1 w3

a neural network’s
Boolean circuit

Leveraging Robustness

As we saw with the adversarial machine learning examples, many image classifications made by 

neural networks have a low robustness, causing them to be easily tricked with minimal changes to 

the input image. However, we can use that same notion of robustness to work in our favor. Although, 

instead of changes to the input image, robustness of a Boolean function is determined by how many 

changes to the input variables are needed to flip the function from True to False, or False to True. 

𝑇ℎ𝑒𝑜𝑟𝑒𝑚: 𝐹𝑜𝑟 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑓 𝑎𝑛𝑑 𝑔, 𝑎𝑛𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛 𝑥. 
𝐼𝑓 𝑓 𝑥 = 𝑔 𝑥 , 𝑏𝑢𝑡 𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠𝑓 𝑥 ≠ 𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠𝑔 𝑥 , 𝑓 𝑎𝑛𝑑 𝑔 𝑎𝑟𝑒 𝑖𝑛𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡.

We ultimately concluded that even if two Boolean functions have equivalent truth values 

given an input, as long as their robustness is different, they’re inequivalent.

Visualizing Robustness

X1 ∧ X2 ∧ X3 ∧ X4 

To better understand robustness, consider the figure above, which depicts the robustness and truth 

values of a single Boolean function. Red nodes indicate that the function is False, green nodes 

indicate that it’s True, and higher robustness at a node is shown by a darker shade of red/green. 

Note that the further to the left we traverse in this graph, the more variables we’d have to flip from “0” 

to “1” to get back to the green (True) node, this is the definition of an increase in robustness. 

Left: X1 ∧ X2 ∧ X3 ∧ X4

Right: (¬X1 ∨ ¬X2 ∨ ¬X3 ∨ ¬X4) ∧ (X1 ∨ X2) ∧ (X1 ∨ X3) ∧ (X1 ∨ X4) ∧ (X2 ∨ X3) ∧ 
(X2 ∨ X4) ∧ (X3 ∨ X4)

By the above figure, we can now visualize how inequivalence can be 

found using robustness. To start, finding inequivalence the traditional 

way would require us to search the graph until we find a node where 

one half is red (False), while the other half is green (True). Though, 

with our theorem, we can find inequivalence at any node in this graph, 

as the robustness of the two functions is different at every node. 

Furthermore, the points of traditionally-found inequivalence cause a 

ripple effect on the robustness of their surrounding nodes, which is 

what causes the consistent differences in robustness.

Conclusion

This faster method of finding inequivalence will assist in the 

development of more efficient knowledge compilers and model 

counters, which will facilitate advances in explainable AI and 

adversarial ML. For future work, we plan to carry out a more 

exhaustive empirical study on our method’s impact on the efficiency of 

existing knowledge compilers, with preliminary results showing a 

~44% reduction in the number of equivalence tests required during 

compilation.


	Slide 1: Faster Inequivalence Testing Using Robustness

