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ABSTRACT. Traffic congestion is an enduring problem for major urban areas such as the 

metropolitan area of Atlanta, GA. Our goal was to understand the nature of traffic congestion 

patterns in the highway system of Cobb County in the metro area. We created a road network 

representative of the Cobb County highway system and then superimposed a degree-based 

Susceptible-Infectious-Recovered (SIR) model to simulate traffic congestion on that network. 

The model’s parameters, propagation, and dissipation rates were estimated using empirical traffic 

data, which are vehicles’ speed time series and speed limit of each road in the network. We then 

conducted a local sensitivity analysis of the model’s key parameters, confirming each parameter’s 

modest impact on the cumulative number of congested roads and the number of congested roads 

at peak time. Then, we used optimal control theory to identify the most effective control function 

in reducing traffic jams in Cobb County. Our findings showed that low levels of control did lower 

total congestion but mimicked the uncontrolled congestion behavior. However, increasing the 

level of control dropped congestion and changed its behavior by diminishing the peak. That is, the 

congestion time series monotonically decreased to zero. This paper provides additional evidence 

that traffic behavior can be accurately predicted by SIR modeling and suggests that there exists a 

precise level of traffic control that eliminates traffic congestion propagation behaviors, given 

enough resources. 

 

KEYWORDS. SIR model, ODEs, traffic congestion, degree-based network, Cobb County 
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1. Introduction 

Traffic congestion is a common problem for high population density American cities, 

which historically have higher car ownership rates and distance driven per capita than other 

western cities. Among American cities, Atlanta, GA, and its immediate surrounding area have 

rated exceptionally high in these metrics [1]. This metropolitan area has a history of sprawling 

suburban development based on roads and interstates. Efforts to improve public transportation 

have historically been met with strong opposition from residents and have entrenched the city 

into further relying on its road system as it grew in population and economic activity [2]. 

Economic shifts in the last few decades have especially strained the transportation network of 

metro Atlanta, with travel volume vastly outpacing the urban development needed to support it 

and as a result increasing commute times. Even more, as the economy further relies on timely 

shipments and employee access, the penalty for traffic gridlock worsens. As traffic becomes a 

more significant problem with more and more potential to hamper the city’s prosperity, solutions 

and the tools to find them are becoming more urgently needed. 

After periods of reduced daily traffic like the COVID-19 pandemic, traffic can rebound 

in a way that produces higher than regular congestion, especially in areas with large proportions 

of transit and carpool commuters [3]. Wu et al. have previously shown that an epidemiological 

Susceptible-Infectious-Recovered (SIR) model can describe traffic congestion over a road 

system, sensitive to rates of traffic propagation, recovery from congestion, as well as changes in 

network topology, provided that the road network could be described as a complex road system 

[4]. The result indicated that developed, non-stop road networks behave like complex scale-free 

networks [5]. On the other hand, Jiang et al. have suggested that road networks have small-world 

characteristics; that is, the average road meets only a few roads, but the path be- tween any two 

roads is relatively short [6], which can result in a fast spread in SIR-type models superimposed on 

such networks [7]. Recovery from congestion causes instability of traffic flow [8], disrupting flow 

to lower levels than expected across the road network, with an aspect of this being 

unpredictability of congestion behavior depending on individual network structure [9, 10], which 

suggests the importance of superimposing models on real road networks. Saberi et al. refined 

the model and simulated real-world traffic congestion in multiple metropolitan areas [11]. Their 

model requires a large amount of traffic speed data, typically requiring the wide-scale ability to 

track individual vehicles. It is possible to simulate live traffic data for the city adequately using 

survey data detailing the travel habits of drivers. However, this simulated data has significant 

inaccuracies compared to recorded speed data [12]. 

Here, we used a SIR degree-based model to study traffic jams and ways to control them 

in Cobb County, which is one of the largest and fastest-growing counties in the Atlanta 

metropolitan area. We generated the road network of the county and then used hourly recorded 

speeds on each road in Cobb County’s highway system [13] to estimate the parameters of our 

model. Then we used the model to predict how traffic proliferation behaves in a road network 

representing the Cobb County highway system. We conducted local sensitivity analysis of the 

model parameters and then used optimal control theory to control the propagation rate to 

minimize the impact of congestion. Our result confirmed the importance of controlling 

propagation rate by different means, such as improved signal timing and capacity increases. 
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2. Methods 

 

Road Network Structure and Data Collection  

 

 We have a network of N nodes, with every node i representing a road, and E edges, where 

every edge ij represents a connection between roads i and j, such as an intersection or highway 

ramp. The degree of node i, shown by di, is the number of nodes connected to node i, and P(k) 

is the probability that a randomly drawn node from the network has degree k for k = 1, ..., D 

where D is the maximum degree of the network: the degree of the most connected node in the 

network. To construct this road network, we focused on 133 roads (highways in Cobb County, 

namely Cobb Parkway, I-75, I-285, and I-575, and major/minor roads connected to these 

highways) as the nodes of the network, and we recorded all connected roads for each of these 

133 roads. Figure 1 shows the map of the studied area (left panel) and the giant component of 

the generated network (right panel). 

 

We gathered recorded speed data manually from a television station in Atlanta, Georgia, 

called WSB-TV [13]. This station periodically posts the traffic speeds of major city roads via 

traffic cameras. We recorded the speeds every 10 minutes during the interval [3 pm, 8 pm] for 

two weekdays, resulting in two speed data points for each road for each 10 minute subinterval. 

Then we averaged over these points to report the speed at each given time interval on each of 

the 133 roads. We also recorded speed limits of the relevant roads from documents posted by 

the Cobb County Board of Commissioners. 

 

 
 

 

FIGURE 1. (Left) Map of the Cobb County highway system, (Right) Network representing 133 

highways and connected roads in Cobb County, Georgia. Nodes represent individual roads, and 

edges represent connections between roads, including intersections and ramps. 

 

Degree-Based Network Model 

 

In order to classify a road at a given time t as congested or not, we recorded each road’s 

registered speed limit and actual speed dependent on time. For node i corresponding to the ith 

road, we represent its speed at time t as vi(t), and the speed limit as vi̅. We then defined λi(t) as the 

ratio between speed at time t and registered speed limit, as shown in Equation 1 [11]: 

 

𝜆i(t) =
vi(t)

vi̅

                                                                                (1) 
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The congestion threshold ρ ∈ [0, 1] classifies a given node as either congested or not by 

the following rule in Equation 2: 

 

𝜆i(t) < 𝜌 → the road i is congested                                               (2) 

𝜆i(t) ≥ 𝜌 → the road i is not congested 

 

In an ideal world, λi(t) ≤ 1, but because vi̅ is the registered speed limit of the road i, not its 

maximum attainable speed, it is possible for λi(t) to exceed 1 in the real world. Nevertheless, we 

assumed the threshold value of ρ to be less than one. The definition in Equation 2 means that if 

λi(t) < ρ, then the vehicles in the road i are moving less than ρ fraction of speed limit vi̅,  which 

can be a sign of congestion in the road i. 

 

To incorporate the heterogeneity of the road network structure into the SIR model, we used 

a degree-based network model [14]. The state variable Ik(t) represents the number of congested 

roads with degree k at time t, Sk(t) is the number of roads not yet congested with degree k at time 

t, and Rk(t) is the number of recovered roads with degree k at time t. These integer-valued state 

variables are approximated by real-valued variables that are the solution of the following ordinary 

differential equation model in Equation 3 [15]: 

 

 
dSk

dt
= −𝛽kθ(t)Sk(t) 

 
dIk

dt
= 𝛽kθ(t)Sk(t) − 𝛾Ik(t)                                                   (3) 

 
dRk

dt
= 𝛾Ik(t)

For k = 1, ..., D the parameter β is the propagation rate that measures the rate at which 

traffic on one road causes congestion on another connected road, and γ is the dissipation rate that 

measures the average time needed for a congested road to become uncongested. In Equation 4 

The function θ(t) describes the probability of being in contact with a congested road for any 

randomly selected road on the network: 

 

θ(t) = 
∑ k'P(k')Ik'

D
k'=1

∑ k'P(k')Nk'
𝐷
k'=1

                                                        (4)
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Nk’ is the total number of roads with degree k′, and P(k′) is the probability that a randomly 

drawn road from the network has degree k′. 

 

Controlling Traffic Using Optimal Control Theory 

 

The modeling framework in Equation 4 can be used to identify propagation-optimal 

control strategies to minimize the total number of congested roads. We improved the modeled 

system in Equation 4 by controlling the parameter β such that demand for travel in the network 

is metered by different means. That is, since β represents the rate at which traffic spreads from 

congested roads to uncongested roads, we improved the model by accounting for strategies 

meant to prevent or curtail traffic once it has occurred. The exact strategy represented by the 

controlled model is abstract. However, examples of real-world propagation controls could be 

optimization of traffic signaling, increased road capacity, building additional connected roads for 

traffic to overflow onto, or greater availability of public transport to lower the demand for 

personal automobiles. Defining U (t) ∈ [Umin, Umax] as a control function, we have the revised 

model in Equation 5: 

 
dIk

dt
= (1 − U(t))βkθ(t)(Nk − Ik(t) − Rk(t)) − 𝛾Ik(t) 

                                                                                       (5) 
dRk

dt
= 𝛾Ik(t) 

 

A successful control scheme minimizes the cost of the controls while reducing the 

number of congested roads until the final time τ. In Equation 6 the control function U(t) is 

optimal if it minimizes the objective functional defined as: 

 

J(U) = ∫ f(t)dt

𝜏

0

 = ∫ C1

𝜏

0

I(t) + 
C2

2
U(t)

2
dt                                        (6) 

 

 As given, I(t) = ∑ Ik(t)D
k=1  is total congested roads, and constants C1 and C2 are the costs 

of controls in time [0, τ]. The objective function J accounts for the total cost of congestion. 

Total number of congested roads times cost of one congested road is ∫ C1I(t)
𝜏

0
, and total cost of 

controlling congestion is ∫
C2

2

𝜏

0
U(t)

2
. The power 2 in the second integrand guarantees the 

existence of the minimized function U(t). Minimizing J(U) subject to the system in Equation 5, 

we find the optimal solution in Equation 7: 

 

U*(t) = max{Umin, min{
β

C2

∑
k𝜆Ik

(Nk − Ik
* − Rk

*)

∑ j𝑃jNj
D
j=1

D

k=1

,Umax}}                       (7)
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𝜆Ik for k = 1, ..., D are the solutions of the adjoint system [16]. In the Results section, we 

will examine the dynamics of the controlled model in Equation 5 for various values of relative 

cost, with 
C2

C1
, representing the ratio of resources spent implementing the control. 

 

3. Results 

 

Parameter Values and Parameter Estimation 

 

The definitions of all the variables and parameters of the proposed model are given in Table 

1. While most parameter values have been taken from data, we must estimate the pair (β, γ): 

propagation and dissipation rates. We did this by finding the pair that the model best fits the 

real-world congestion data for a given ρ. To find the real-world congestion data, we calculated 

the ratio of the speed of the road at a given time t to the maximum speed of the road, both taken 

from the collected speed data. We then compared this ratio to the described congestion threshold 

ρ. If the ratio was less than ρ, we flagged the road as congested. That way, we could count the 

number of congested roads at a given time t, presented as cross data points in Figure 2. Then, we 

used MATLAB’s fminsearch function [17] to minimize the error between the model’s simulation 

and the data, as shown in Figure 2. Table 2 shows the estimated pair (β, γ) alongside their 

corresponding ρ threshold. 

 

TABLE 1. Parameters of model, definitions, and baseline values. 

 
Parameter Definition Value Ref. 

N Number of roads 133 Data 

D Maximum degree of the road network 26 Network 

k̄  Average degree of the road network 2.647 Network 

ρ Congestion threshold 0.7, 0.8, 0.9, 1.0 Arbitrary 

β Propagation rate Depends on ρ Estimated 

γ Dissipation rate Depends on ρ Estimated 

 

TABLE 2. Estimated model parameters β and γ for different values of congestion threshold ρ for 

5-hour simulation results on the network. 

 

ρ β γ 

0.7 0.055 0.115 

0.8 0.062 0.088 

0.9 0.063 0.064 

1 0.072 0.053 

 

Sensitivity Analysis  

 

We conducted a local sensitivity analysis to quantify the robustness and resilience of the 

model result (total number of congested roads and the number of congested roads at the peak time) 

to our assumptions about model parameters (the propagation rate β, dissipation rate γ, and 

congestion threshold ρ). This local sensitivity analysis measures the relative derivative of the 

model output q with respect to the model input p nearby its particular reference (baseline) values 

[18, 19]. We measured the relative local sensitivity by the sensitivity index of output  q, with respect 

to input p defined as Sp
q =  

p

q
 ×  

∂q

∂p
|
p=p* where p* is the baseline value for parameter p. Sensitivity 
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index measures the percentage change in an output q given the percentage change in an input p, that 

is, if p changes by x% then q will change by Sp
q
 × x%. 

 

To determine the effectiveness of input parameters β, γ or ρ, we compared the total number 

of congested roads (TI) and the number of congested roads at peak time (Imax) by varying each input 

parameter around their baseline values (β* = 0.055, γ* = 0.115 and ρ* = 0.8) at a time while freezing 

other parameters at their baseline value in Table 1. 

 

Figure 3 shows change in TI as propagation rate β or dissipation rate γ change from 0 to 

0.25. The sensitivity indices S𝛽
TI

 = 0.48 and S𝛾
TI

 = −0.49 suggest that TI will increase by around 0.5% 

for every additional 1% increase in β, and decrease by around 0.5% for every additional 1% increase 

in γ. We also observe a similar trend and result for the sensitivity of Imax to propagation and 

dissipation rates β and γ in Figure 3. 

 

 

 

FIGURE 2. The number of congested roads (y-axis) with respect to time (x-axis) for the four 

different values of congestion threshold ρ. Curves indicate the model’s result when given an 

initial condition dependent on the relevant value of ρ, and crosses indicate the calculated 

number of congested roads using speed data.
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To observe how changing the congestion threshold ρ impacts the result, we compared TI 

and Imax by varying the threshold ρ between 0.7 and 1. Figure 3 shows a slight increment in 

TI as the threshold ρ increases from 0.7 to 1. The result suggests a sensitivity index of S𝜌
TI

 = 

S𝜌
𝐼𝑚𝑎𝑥 ∼ 0.4 for ρ∗ = 0.8, that is, every additional 1% of congestion threshold ρ causes a 0.4% 

increase in the total number of congested roads and the peak of congestion, which is not a 

significant increase, so the result would be robust with congestion definition as long as ρ ∈ [0.7, 

1]. 

 

Controlling Traffic Using Optimal Control Theory 

 

Using the control model in Equation 5 and assuming ρ = 0.7, and therefore β = 0.0555 

and γ = 0.115, we tested the controlling of propagation rate β for four different scenarios; a) 

baseline scenario no control (when relative cost 
C2

C1
 = 0), b) low control scenario when relative 

cost 
C2

C1
 is high, so that controlling the system is costly (

C2

C1
 = 500) and therefore the amount of 

implemented control would be low, c) medium control scenario when relative cost 
C2

C1
 is medium, 

so that controlling the system is of moderate cost (
C2

C1
 = 50) and thus a mid-level control can be 

implemented, and d) high control scenario when relative cost 
C2

C1
 is small, so that controlling the 

system is inexpensive (
C2

C1
 = 5) and therefore the amount of implemented control would be high. 

Figure 4 shows the number of congested roads over the selected time interval for the four 

scenarios. If we have finite resources and the cost of controlling β is relatively high, then our 

control has a relatively weak result, but as the cost of implementation lowers, we can afford a 

stronger control, which eventually results in propagation taking on a more controlled behavior; 

congestion monotonically decreases rather than increasing to some peak before dissipating, as 

represented by the medium control scenario. Any further decrease in cost allows us to strengthen 

the control and, thus, will cause a more drastic initial dissipation of congestion, represented by 

the high control scenario. 

 

4. Discussion 

 

The Atlanta metropolitan area is found to be one of the most congested urban areas in the 

United States, where drivers spent an average of 72 hours stuck in traffic in 2022, with a likely 

chance that that time stuck on the road will get even worse in 2023 [20]. To understand traffic in 

metro Atlanta, we collected traffic speed data from Cobb County’s highway system, an area we 

selected for manageability. Data included traffic speed at a given time (average of vehicle’s speed) 

and speed limit of each road, in the time interval of 3:00pm-8:00pm. Using this data, we 

calculated the ratio of current speed to the speed limit at a given time for each road, which allowed 

us to label streets as either congested or uncongested depending on if the ratio is below or above an 

arbitrary threshold ρ ∈ [0, 1]. We also generated a network representative of the Cobb County 

highway system, enabling us to develop a degree-based SIR model and simulate congestion 

propagation over the network. We calibrated the model’s parameters, congestion, propagation, 

and congestion dissipation rates, to the observed data over the given time frame, resulting in an 

optimal set of parameters for each p threshold. 

 

Conducting local sensitivity analysis on propagation and dissipation rates and congestion 

threshold confirmed that each parameter, when scaled, resulted in modest changes in the model’s 

output, the cumulative number of congested roads, and the number of congested roads at peak 
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time; see Figure 3. Finally, with the calibrated model, we implemented a control on propagation 

rate β. We showed that given a sufficiently large amount of resources, it could be made such 

that congestion dissipates monotonically over time. However, if resources are sparse, congestion 

propagation is lessened but maintains qualitative behavior; see Figure 4. 

FIGURE 3. Local sensitivity plot of output q in y-axis with respect to input p in x-axis. Top 

left panel: Changing TI as function of propagation rate β (solid line), and dissipation rate γ 

(dashed line). Top right panel: Changing Imax as function of propagation rate β (solid line), and 

dissipation rate γ (dashed line). Bottom panel: Changing TI (solid line) or Imax (dashed line) as 

function of congestion threshold ρ. 
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FIGURE 4. Congestion dynamic for the absence (black curve) and presence (red curves) of 

optimal control and for parameter values ρ = 0.7, and thus β = 0.055 and γ = 0.115. Results 

indicate that moderate or high levels of control implementation are able to reduce the 

congestion without first reaching any peak value. 

 

Although our goal was to shed some light on the issue of traffic jams in one county of metro 

Atlanta, we can improve the work by studying the problem on a larger portion of the metro area. 

Our parameter estimation method did not sufficiently predict the timing and value for the peak 

of congestion; see Figure 2. More robust data collection by collecting finer data in a larger time 

interval and using a more detailed estimation method such as Weighted Least Squares (WLS) 

[21] would yield more accurate results, which could be the future direction of this work. 
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