Employee Development Using WebCT Vista

Jennifer Link Jones
jlink@gsu.edu

Follow this and additional works at: https://digitalcommons.kennesaw.edu/glq

Part of the Instructional Media Design Commons, and the Library and Information Science Commons

Recommended Citation
Available at: https://digitalcommons.kennesaw.edu/glq/vol46/iss2/5
In November 2007, Georgia State University Library celebrated the grand opening of its extensively renovated spaces. Two buildings, Library North and Library South, underwent a $20 million transformation. Improved lighting, new furniture, more than 50 study rooms, and expanded pedestrian bridges connecting the library buildings have contributed toward a more welcoming, user-centered space. Students love the renovations and are spilling through the doors in waves.

Part of the renovation was a technology upgrade: more than 350 new computers were installed in the library’s new Information Commons and Learning Commons. The computers are equipped with over 100 software programs, including the Microsoft Office products, SPSS, EndNote, and AutoCad.

This new technology called for additional technical support. The library collaborated with the campus Information Systems & Technology (IS&T) department and established two computer technical support desks within the library. These desks are staffed by student employees of IS&T who remain quite busy. If patrons are lined up waiting for help at the support desks, then library employees are expected to provide technical support as well. With so much new technology, library administration was challenged to ensure that library employees could provide adequate technology support to patrons.

Public Services Technology Competencies
As the training & assessment librarian, I began identifying the technical skills and knowledge required of every employee working at one of the public service points: the research support desk, the media center, and the circulation desk. I, together with representatives from the Learning Commons, Liaison & Outreach Services, and Access & Media Services departments, developed a skills set, which we entitled the Public Services Technology Competencies. Once the competencies list was developed, we created a process for assessing employees’ knowledge and abilities relative to the list in order to measure training needs. Employees used a checklist-style document for self-assessment and were realistic about their knowledge and skill levels. Some employees added additional items to the list on which they felt they needed training, so the self-assessment became an ad hoc survey tool as well.

Issues
Based on the self-assessments, employees needed training on a number of topics. I found this exciting, since employee development is my job, but difficult given the number of employees affected and their work schedules. As is the case in most libraries, University Library employees’ varied work schedules make scheduling face-to-face training a challenge. On a typical weekday, the library is open to employees from 7 a.m. to 12 a.m. We have full-time, 9 a.m. to 5 p.m. employees; full-time employees who work only evenings and weekends; part-time employees; and many employees who take advantage of our flex-time system to start and leave early, start and leave late, or stretch the day to accommodate several hours off to attend a university class. Another consideration was that public services employees all work at a public service point, which makes scheduling training difficult due to desk shifts that must be covered. I needed a way to provide the competencies information to everyone, regardless of work schedule.

An additional factor of planning training was that face-to-face instruction, while ideal for information retention and participant engagement, is impractical when only a few employees need training on the topic being presented. The self-assessments uncovered some topics
on which only a few employees felt uncomfortable, so I
needed a way to accommodate the needs of those who
required training while presenting the information so that
topics could be skipped by those who knew them well.
The obvious solution to the problem of providing
convenient, efficient training was to put it online and
make it self-paced.

The next issue to think about was what form the online
training should take. Our library currently uses an intranet
for internal communication and a wiki for collaborative
projects. The collaborative nature of the wiki was not an
appropriate medium for conveying the technology
competencies training. I needed a way to monitor
employee progress, since employees were expected to
become proficient in particular skills and knowledge. The
intranet did not inherently provide a system for
monitoring progress. I decided to take advantage of our
campus course management system (CMS), WebCT Vista.
I had experience using WebCT Vista to create library
instruction modules and collaborate with a teaching
faculty member in a previous position as instructional
design librarian, so I was familiar with the interface. I
needed to incorporate an assessment instrument into the
online training, and WebCT provides quiz-creation tools.
For these reasons, WebCT seemed like a logical solution
to deliver employee training.

Constructing the Learning Modules
To begin setting up the technology competencies course
in WebCT, I contacted the WebCT support desk on
campus, explained why I wanted a course and provided
my WebCT user name. Within 24 hours of my request,
the support desk created a course with me as the
instructor.

Learning modules in WebCT can contain “content
pages,” which look and function like standard Web
pages. A content page either can be created outside of
WebCT and uploaded into a course file database, or the
instructor can create content files within WebCT. Other
component options that can be added to learning
modules are URLs, which link to Web content outside of
WebCT; assessments; whiteboards; chats; discussions;
assignments; and syllabi. WebCT automatically generates
a sidebar on the left side of each learning module, and
each component of the learning module is a navigational
link in the sidebar.

I determined the technology competencies course content
based on the self-assessments, and I created eight distinct
learning modules for content. Each module can be taken
independently, so that employees easily can skip content
they already know well. Some content I wanted to
incorporate into the modules existed elsewhere — mainly
on the library’s intranet and on the university’s public Web
site. To avoid duplicating this content, I used WebCT’s
URL feature, which is a link to a Web page that is
displayed within WebCT. I linked to various pages of the
Research Support Desk Manual on the intranet, other
intranet pages I had created, and Web pages from the
university’s Digital Aquarium, the high-end, multimedia
campus computer lab (see figures 1 and 2).

Incorporating Videos and YouTube
Some of the most frequently checked items on the
technology competencies self-assessments were the items
having to do with microforms. Successfully learning to
use microforms requires seeing how to use them, so I
thought this content would be a good candidate for
video format. I made three short videos on loading
microfilm; loading microfiche; and zooming, focusing,
and rotating microforms. I created a library training
account at YouTube (http://www.youtube.com) and
uploaded the videos. YouTube provides a piece of code
with each video for embedding the video in a Web page.
I used this code to embed each video into its own content
file (see figure 3). The videos were the most popular item
among all of the learning modules, and they even
received a few ratings and comments from external
viewers who found them searching YouTube.
One learning module was devoted to software applications available from library computers. Employees are expected to be able to provide basic support on the Microsoft Office applications Word, PowerPoint, and Excel. These “basic support” tasks are best learned by observing and practicing, so I developed eight short screen animation videos using Macromedia Camtasia on topics including printing gridlines in Excel, changing page orientation in Word, and animating objects in PowerPoint (see figure 4). The animated tutorials ranged from 30 seconds to two minutes.

Assessments

As noted previously, WebCT provides easy-to-use tools for creating and customizing assessment items. The instructor can set options such as the number of tries a student is allowed per assessment and the time limit the student has for completing the assessment. It is also flexible as to how answers can be submitted; for example, if there is more than one correct answer, then the instructor can indicate that multiple correct answers should be recognized. WebCT maintains records for the instructor, including quiz attempts and quiz scores for each student.

For the technology competencies assessments, I built a brief quiz within each learning module, employing multiple choice, true/false, and fill-in-the-blank question types (see figure 5). The quizzes were graded, and the grades were recorded in my WebCT Vista grade book. This allowed me to check progress, find out who had completed all of the assessments, and give progress reports to supervisors. I allowed for two tries per quiz, and I imposed a time limit of five minutes on each 3-6 question quiz. All of the questions could be answered from learning module content. In fact, employees were free to “cheat” and look back over the module for help answering the questions. The intent was to provide a review for employees and to highlight the most important points.

Testing

Once I completed the first draft of the modules, I recruited testers from among the group of employees who would use the tutorials for training. I wanted testers who were somewhat familiar with and who had a stake in the content. Three testers provided valuable, thorough suggestions and corrections. After the modules were tested and edited, the Public Services Technology Competencies course was announced to all relevant employees.
The Challenges

The greatest challenge in implementing the technology competencies training plan was getting buy-in from three department heads and approximately 50 employees. One department head imposed a deadline for employees to complete the learning modules, which motivated that department’s employees. Some employees were reluctant, because they believed the modules would be time-consuming. I assured them that, based on testing, they could complete all the modules in under two hours and reminded them that the modules did not have to be taken in sequence or in one sitting. These assurances motivated some employees. Other employees did not see this as serious training, because 1) it was online, and 2) it was not fully endorsed by their department heads. For a project like this to have the greatest impact, completion of the training should be tied to employee goals or evaluation.

Another challenge was logging into the course. Some employees had dual student-employee status, which meant they had two usernames and did not know which one to use. Faculty log in differently than staff, so access instructions had to be specific according to position. For security reasons, I could not access employees’ passwords, so employees had to contact the campus WebCT support unit for assistance. Most employees were able to access the course without any problems, but a few employees had to go between me and the WebCT support unit before they could log in successfully.

The Successes

While I have not created any follow-up assessment tool to evaluate employees’ reactions as to how the technology competencies learning modules helped them better perform their jobs, the training appears to have been successful. Anecdotally, through conversations and e-mails, I know employees appreciated being able to work at their own pace and the ability to review modules at will. Employees liked the different types of content, especially the videos and screen animations, and some showed concern when they didn’t score 100 percent on every quiz. Everyone wanted to succeed. Supervisors appreciated getting reports about employees’ progress toward completing the modules.

Overall, employees now seem more comfortable with the technology the library provides, which I believe can be attributed to their knowing where they can find the information they need to learn about technology. Employees’ anxiety about the library providing access to an array of resources combined with no central place to go to learn about them led some people to believe they knew less than they did.

Conclusions

Although a face-to-face, hands-on class is a desirable format for technology training, efficiency and outreach to the greatest number of employees must be considered. Putting technology training online can reach a larger employee audience while maximizing convenience to the individual learner.

When planning employee development, inventory the skills and tasks necessary for the project and then honestly evaluate your strengths. Investigate what campus technologies and technological support are available to you.1 If your campus uses a CMS; provides quiz-development software; and/or offers support through workshops, consultations with instructional technologists, and the use of a technology lab, then use these resources before you invest in them or try to train yourself to use them. Seek out the people who can help you produce the best product.2

The experience of delivering training using a CMS at Georgia State has shown how this effort can benefit both the employee and the library. Employees appreciate the convenience and efficiency of the online training opportunities created for them, and they easily can keep their skills and knowledge current. Their technological proficiency means that they can provide outstanding service and support to patrons, which, in turn, benefits the library.

Jennifer Link Jones is a training and assessment librarian at the Georgia State University Library in Atlanta.

Endnotes: