The Model Holistic: The Application of the Adaptive Cycle to Rust-Belt Cities

Marysia LaRosa

Follow this and additional works at: https://digitalcommons.kennesaw.edu/barch_etd

Part of the Environmental Design Commons, and the Urban, Community and Regional Planning Commons

Recommended Citation
https://digitalcommons.kennesaw.edu/barch_etd/131

This Thesis is brought to you for free and open access by the Department of Architecture at DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Bachelor of Architecture Theses - 5th Year by an authorized administrator of DigitalCommons@Kennesaw State University. For more information, please contact digitalcommons@kennesaw.edu.
THE MODEL HOLISTIC

THE APPLICATION OF THE ADAPTIVE CYCLE TO RUST-BELT CITIES
Note from the Designer

In 2015, as a recent high school graduate, I had no idea what I wanted for my college degree. I was torn between a passion for design and a love for science. I considered Biology, Journalism, and Biotechnology, but nothing caught my eye. I remember there was one day left to register for the summer workshop and I just had to give it a try. Making that decision changed my life forever. I never thought I would be in a classroom planning my future. I have been blessed to have been able to push myself to be better, to achieve more than I ever thought possible. I have discovered hidden abilities within myself. I am now able to fully experience college and be the only parent to show up to all awards ceremonies.

I am pleased to name the following acknowledgments and awards I received for this thesis.

• Undergraduate Research Scholarship to present at the ACSA Less Talk, More Action Conference at Stanford University

• 3-Minute Thesis Finalist

• ARCC King Student Medal Recipient for Excellence in Architectural + Environmental Research

• Kennesaw State University Office of Undergraduate Research Symposium Researcher and First-Runner Up

The Model Holistic

The application of the adaptive cycle to rust-belt cities

Request for approval of thesis research project book presented to:

edwin akins II

and to the faculty of the department of architecture

college of architecture and construction management

by

Marysia laRosa

in partial fulfillment of the requirements for the degree

Bachelor of Architecture

Kennesaw State University

Marietta, Georgia

May 1, 2020
1.1 Abstract

2.1 Introduction

2.2 Resilience Through Ecology

2.2.1 Shocks and Slow Burns

2.2.2 Operation of Complex Systems

2.2.3 The Four Themes of Urban Resilience

2.3 Defining the Adaptive Cycle

2.3.1 Panarchy Model of Change

2.3.2 The Adaptive Cycle and Urban Place - The Burgage Cycle

2.4 Conclusions

3.1 Detroit, Michigan

3.2 Scranton, Pennsylvania

3.3 Greenville, South Carolina

3.4 Conclusions

4.1 Utica, NY Within the Rust Belt

4.2 Utica, NY Through the Adaptive Cycle

4.3 Utica Imagery

4.4 Utica, NY V.S. Case Studies

5.1 Using Kevin Lynch’s 5 Elements of a City to Enhance Design Qualities

5.2 District Breakdown Related to Design Qualities

5.3 The Adaptive Cycle as a Scalar Panarchy

5.3.1 Sense of Place

5.3.2 Isolated Adaptive Cycle Districts

5.3.3 Completing the Network

5.3.4 Focused Design

6.1 Bagg’s Square West

6.2 Mohawk Valley Health System (MVHS)

6.3 The Brewery District (Globe Mills)

7.1 Design Intent

7.1.1 Community Investment

7.1.2 Node Weaknesses / Vision

7.2 Design Qualities

7.3 Nodes

7.3.1 Node 1 - Oriskany St. & Genesee St

7.3.2 Node 2 and 3 - Broadway & Oriskany St, Broadway & Lafayette St

7.3.3 Node 4 - Columbia St & Lafayette St

7.3.4 Node 6 - Court St & Varick St

8.1 Reflection

A.1 Models

A.2 Bibliography

A.3 Figure Index

A.4 Image Index
1.1 Abstract

The Model HOLISTIC

Marysia LaRosa
1.1 ABSTRACT

For too long, the relationship between the natural and built environment has been overlooked, leading to a disconnection between humanity, nature, and architecture. Can enforcing this relationship change the way we think about urban design and resiliency? Like ecology, cities act much like an ecosystem, going through four phases; exploitation, conservation, release, and reorganization. For instance, cities go through periods of rapid growth where resources and capital of nutrients are combined. Over a slow period, these resources are conserved and protected rather than used for innovation. In the case of a disturbance, the vulnerability of the system at this point leads to eventual collapse and release of resources. Finally, as a result of this release, the system can reorient itself along a pathway toward a new phase of exploitation and regeneration. Together, these phases are known as the adaptive cycle, an ecological resilience model developed by two ecologists at the University of British Columbia, C.S. Holling and C.J. Walters. The phases describe the cyclical and self-organizational patterns of complex systems over an extended period. Based on this knowledge, how can these four phases be applied to cities that have transitioned through similar patterns?

This work seeks to prove the adaptive cycle can be a holistic model for cities to establish architectural and urban strategies that increase city resiliency. A new method for analyzing city systems through the adaptive cycle can be a holistic way to prolong resiliency by increasing density, diversifying industry, encouraging organizational autonomy, embracing all cultures, and generating new ideas.

Once deemed the “Industrial Heartland of North America” but now represented as the ultimate decay of the American industrial system, Rust-Belt cities are the poster child for the many cycles through which a city evolves. The Rust-Belt’s resource pool is incredibly valuable but is often dormant or underutilized. Vacant land and abandoned buildings are scattered throughout Rust-Belt urban cores, awaiting adaptive re-use. Their spatial structures offer great potential for dense urban corridors. Despite their population loss to other regions, a recent influx of immigrants to many Rust-Belt cities has stabilized their populations and has introduced a variety of skills, culture, and diversity to the region.

The thesis focuses on a second-tier Rust-Belt city, Utica, New York, located an hour North-West of the capital, Albany. Utica is a unique city, which previously played an incredible role in the manufacturing and textile industries. However, the extreme deindustrialization which occurred in the late 20th century ultimately led to population loss and decreased urban connectivity. Losing the identity of Utica completely, this thesis seeks to apply the adaptive cycle model to Utica by targeting specific nodes within the urban context to place Utica on a positive trajectory of resiliency. Through research and analysis of these case studies, it is hoped that by understanding what interventions have proven successful in increasing or decreasing city resiliency the investigation begins by analyzing Utica’s urban systems in terms of districts. The 6 main districts of Downtown include the Genesee Street Commercial Corridor, Bagg’s Square, MWP ALI Arts District, Bleeker International Corridor, Mohawk Valley Healthcare District (MVHS), and The Brewery District. These districts were analyzed per their phase on the adaptive cycle and were measured against Utica (the host adaptive cycle). The intervention attempts to connect isolated districts to the host adaptive cycle in order to unify all districts and place Utica on a positive trajectory toward resiliency. This is accomplished by choosing specific nodes in the Downtown area, and injecting them with low investment design qualities. This will create an evolutionary process that will transform these districts entirely. The network of nodes and the connectivity between them will be called the Utica Citywalk. This new urban amenity will encourage Utica’s economic, social, and civic growth allowing it to grow into the vision of a 21st-century Rust-Belt city.
CH.2 RESILIENCE THROUGH ECOLOGY

2.1 Introduction

2.2 Resilience Through Ecology
 2.2.1 Shocks and Slow Burns
 2.2.2 Operation of Complex Systems
 2.2.3 The Four Themes of Urban Resilience

2.3 Defining the Adaptive Cycle
 2.3.1 Panarchy Model of Change
 2.3.2 The Adaptive Cycle in Urban Place - The Burgage Cycle

2.4 Conclusions
The chapter on “Resilience Through Ecology” aims to connect knowledge from various disciplines on ecological resilience to discover new concepts and further research and analysis. The introductory part laid the chapter’s foundation by illustrating examples of ecological resilience, self-organization, and structure. The analysis of these concepts leads to a realization that resilience theory can be strengthened by the use of the historical look at the concept of resilience. This progression of the book environment is foundational and removes these changes in the world landscape in conjunction with the current conventional thinking about the relationship between ecological and urban systems.

A holistic approach to analyzing urban landscapes through the examples of ecological resilience can sometimes be complex and complete systems, yet some practicality, land-use dynamics, and human qualities, they are always operating around a point of equilibrium. Complex systems have self-organized patterns in the shape of an adaptive cycle. Figure 2.2.1 illustrates the concept of ecological resilience through the interactions of urban environments and socio-ecological systems (SES). The flowchart on the right side of Figure 2.2.1 demonstrates the interaction between resilience and other ecological systems.

Without question, resilience is a natural phenomenon of ecosystems. Pulling a rubber band to twice its normal size requires a minimum of force to return the rubber band to its normal size. Similarly, an ecosystem can return quickly to its normal shape after being changed by a severe stress. Once the stress is released, the rubber band returns to its normal shape. The rubber band is resilient because it can return to its original size and shape.

Ecological resilience is a useful framework that can be used to explain the transformations of ecosystems through a perspective of multiple layers and continuous social-ecological system. The resilience of a system can be determined by the length of time it takes for the system to return to a new equilibrium state after a perturbation. The longer the ecosystem state or the length of time it takes for the ecosystem to return to a previous equilibrium state, the higher the resilience and the lower the stability. As demonstrated in Figure 2.2.1, the longer the ecosystem state or the longer the time it takes for the ecosystem to return to a previous equilibrium state, the higher the resilience and the lower the stability.

The model illustrated in Figure 2.2.1 is based on the idea that resilience is the ability of an ecosystem or social system to continue functioning despite severe and sudden disturbances. To understand the concept of resilience, imagine a rubber band and a piece of string tied in a loop. If you stretch the rubber band beyond its normal size, it will return to its normal size. Similarly, an ecosystem can return to its normal state after being disturbed. This is an example of resilience.

2.1 INTRODUCTION

We can define resilience as the ability of an ecosystem or social system to continue functioning despite severe and sudden disturbances. To understand the concept of resilience, imagine a rubber band and a piece of string tied in a loop. If you stretch the rubber band beyond its normal size, it will return to its normal size. Similarly, an ecosystem can return to its normal state after being disturbed. This is an example of resilience.
Resilience Capacity Index, which is defined as the potential of a system to recover from a disturbance or to maintain a stable state over time. This index is calculated as the ratio of the maximum limit to the current system state, and the cups or valleys represent the different regimes or domains of attraction in the system. A regime shift entails a shift from one domain of attraction to another. Regime shifts are possible regimes or domains of attraction in the system. A regime shift occurs when the system is no longer able to maintain a stable state due to a combination of a "shock" and slow changes in external drivers and/or internal feedbacks that change the dynamics of the system (Gunderson et al. 2011).

To declare if the theories and concepts surrounding ecological resilience can be applicable to the resilience of the built environment and urban landscapes, it is first crucial to investigate if the behavior of the built environment acts similarly to that of complex adaptive systems (CAS) (A. Holland, 1980; J. Holland, 1992; Garcia, 2013). The study of CAS in ecology and urban landscapes is relevant to understanding how shocks to such systems (external disturbances) interact with existing landscape elements (exogenous shocks) and the system as a whole (endogenous factors) (Garcia, 2013). To support this notion, we introduce two models, one for shocks and one for slow burns. The shocks model examines if the built and urban landscapes can be considered complex adaptive systems (CAS) (A. Holland, 1980; J. Holland, 1992; Garcia, 2013). The slow burns model examines how the built and urban landscapes evolve over time and how they adapt to changing conditions. When studying an innovation as a system, a trajectory might evolve where the idea of an innovation has failed to be launched commercially. In this case, the innovation can be regarded as having failed. A second trajectory might be applicable to the resilience of the built environment and urban landscapes. It's first crucial to investigate if the behavior of the built environment acts similarly to that of complex adaptive systems (CAS) (A. Holland, 1980; J. Holland, 1992; Garcia, 2013).
2.2 DEFINING THE ADAPTIVE CYCLE

The primary model in which resilience theory is often a model of resilience is adaptive cycle (Holling and Gunderson, 2002). The adaptive cycle (Holling and Gunderson, 2002) describes the adaptive cycle as a metaphor and conceptual tool for understanding changes in the capacity of complex adaptive systems (e.g. ecosystems and social-ecological systems). The adaptive cycle theory has four phases: exploitation (r), release (α), conservation (K), and reorganization (r). Each phase is characterized by different levels of potential, connectedness, and resilience. The adaptive cycle can be visualized as a 3-D space in which potential, connectedness, and resilience are constantly in flux as the system moves throughout time. The high connectivity of the system and the investment of resources reaching α maximum capacity is the release (α) phase. Potential decreases because resources are given back to the system, connectedness decreases, and resilience is low but is being built up as new resources accumulate and growth re-establishes to form a new identity unique from the previous system. Potential is high as resources have emerged, connectedness decreases, and resilience is low, but rising and resilience is high. The first phase of the front loop, exploitation (r), is the emergence of a new regime. During this phase, new resources are being accumulated and growth re-establishes to form a new identity unique from the previous system. Potential is high as resources have emerged, connectedness decreases, and resilience is low, but rising and resilience is high. The high connectivity of the system and the investment of resources reaching α maximum capacity is the release (α) phase. Potential decreases because resources are given back to the system, connectedness decreases, and resilience is low but is being built up as new resources accumulate and growth re-establishes to form a new identity unique from the previous system. Potential is high as resources have emerged, connectedness decreases, and resilience is low, but rising and resilience is high.
Resilience Through Ecology

Marysia LaRosa

Primary Succession
Hundreds of Years

Secondary Succession
0-150+ Years

Figure 2.3.2

Pioneer Species
Intermediate Species
Climax Community

Figure 2.3.3

Pioneer Species
Intermediate Species
Climax Community
Robust evidence for stability in larger-scale patterns such as biomass even and equilibrium dynamics was the norm (Clements, 1936). In fact, there is led earlier ecologists to assume that deterministic successional behavior stable quasi-equilibrium behavior which can persist long enough that it criticality concurrently. This would generate severe instability as even system could be at a criticality point or even within a narrow range of is not obvious that all spatial and temporal scales of a complex adaptive sets the “rules” for which the smaller levels follow. For example,”revolt” can of the system’s dynamics. Furthermore, it can be said that the larger level the “Remember” function.

Figure 2.3.4, two significant connections are labeled “revolt” and “remember.” Smaller levels are faster, more innovative, and experimental while larger, slower levels stabilize and maintain resources and memory of the systems dynamics. Furthermore, it can be said that the larger level can be said to be the smaller levels. Larger levels in systems can be considered as when a small is a part in the sense of the lower level, but the original is a part of the higher level; interaction is bidirectional. In other words, the feedback loop is bidirectional. Figure 2.3.5, three levels structure and processes interact across scales at key phases of the adaptive cycle. These cross-scale structures and processes interact across scales and within levels in the panarchy and vice versa (yellow arrows) .

We hypothesize that the conservation (K) phase of an adaptive cycle may operate at SOC or at the edge of chaos, but only if cycles of collapse and of order and complex frequency rates that prevent the generation of order systems over time (Bolliger et al., 2003), then this suggests that younger becomes the fuel load which can spread fire throughout the forest, making it likely that the region of parameter space encompassing SOC for a mature system is gradually pushed out of the parameter space in which a system can maintain SOC. For example, a slow changing variable such as climate change likely shrinks the region of criticality, making it easier for disturbances to even chaotic (Ernest and Brown, 2001, Scheffer et al., 2003, Hatton et al., 2015). Even small events occur to trigger a collapse or phase transition (Gilpatrick and Yezzi, 1998). We hypothesize that if a system is not obvious that all spatial and temporal scales of a complete adaptive system could be at an edge of chaos or even within a narrow range of virtually uncertainty. The social governance of stability and a sense of uncertainty can contribute to resilience and system’s adaptability. Instead of resilience-level system scales and larger, we tend to see an integrated hierarchy of feedbacks which are more important (Figure 2.3.6). It is argued that in the context of feedback networks, resilience (Holling, 1973), self-organization (Haken, 1983), and adaptive cycles (Scheffer et al., 2001) assume critical roles in the study of ecosystems.

In short, we would hypothesize that within each adaptive cycle nested within a system, power law behavior and edge of chaos dynamics will increase as the system moves through the exploitation and conservation phases (Brunk, 2002). The timescales, therefore, for processes and resources accumulated at a larger scale interactions can take place from lower to higher scales of ecological structure and the nested adaptive cycles comprising a panarchy for a pine dominated ecosystem. Four adaptive cycles, and scales of structure and function are shown for this system (for convenience only). Within- cycle structure and processes interact across scales at key phases of the adaptive cycle. These cross-scale interactions can take place from lower to higher levels in the panarchy and even across systems spanned by the three levels...
Since its emergence, the Adaptive Cycle has been analyzed across a multitude of systems beyond ecological such as social, economic and urban systems but not yet urban form. Before there was the Adaptive Cycle, there was the Burgage Cycle, a model proposed by geographer Conzen (1960) which he describes as the “progressive filling in with buildings of the back-land of burgages (a medieval lot owned by a king or lord) terminating in the clearing of buildings and a period of urban fallow before the initiation of a redevelopment cycle.”

Similar to the Adaptive Cycle, the Burgage Cycle is divided into 4 phases; Institutive, Repletive, Climax, and Regression. The Institutive phase is the first phase, where the lot is initially settled and is prepared for infrastructure. The Repletive phase describes the progressive in-filling of the land. Climax, is when the plot structure reaches maximum density leading to Regression where density and % of building coverage rapidly decreases and is eventually obliterated. The cycle then returns to another Institutive phase where it either adapts to new components or builds off pre-existing networks.

Based on this synopsis, it is quite clear that the phases of both the Burgage and Adaptive Cycles are equivalent in value. In addition, in between phase transitions, each phase responds to influence from wider contexts and either adapts to those changes or relies on previous network structure to evolve.

As designers of urban and architectural landscapes, it is important to think of these spaces in terms of preservation and mitigation, to be places that buffer intense disturbances. The Burgage Cycle as described by Conzen in Figure 2.3.6 shows the evolution of a plot of land in relation to the Adaptive Cycle. These diagrams show the need to think about urban design as naturally progressive system, not isolated or static.

2.4 CONCLUSIONS

The fundamentals of Resilience Theory can provide a deeper understanding of how complex systems operate at multiple scales and under multiple stressors. The chapter clarifies the notion that the theory and conceptual background of complex adaptive systems can be a practical way to explore dynamics of change within an urban system seeing that they are both complex systems which adapt in the face of a disturbance.

The evolutionary progression of ecosystems, best explored through Ecological Resilience Theory, can be directly compared to the dynamics of change within an urban landscape. As described in the chapter, complex systems such as the Adaptive Cycle can be a model to describe the resilience and stability of urban landscapes in response to time and unprecedented change. The Burgage Cycle, as described by Conzen, serves to understand the spatial organization and evolution of urban landscapes alongside the Adaptive Cycle. However, metabolic and temporal cycles can be a perspective that is needed in order to fully understand the impact of the Burgage Cycle on the Adaptive Cycle.

Resilience Theory also proves that all social and ecological systems are constantly in flux. Change is seen as a bad thing, but it can also act as a positive influence on a system to innovate and create opportunity. Resilience acknowledges not just the importance of social, historical and physical attributes of an urban landscape, but its importance to develop new ideas and techniques in order to survive and exist.

The impact of applying a Resilience Theory approach to urban landscapes can be summarized as:

1. A holistic approach to analyzing urban landscapes can communicate how complex systems operate at multiple scales and under multiple stressors.
2. By applying Resilience Theory, you can analyze how urban systems can recover and reorganize when faced with disturbance.
3. The phases of the Adaptive Cycle can be directly compared to the dynamics of change within an urban landscape. As described in the chapter, complex systems such as the Adaptive Cycle can be a model to describe the resilience and stability of urban landscapes in response to time and unprecedented change.
3.1 DETROIT, MICHIGAN

What classifies Detroit as a Rust-Belt City?

Detroit, the largest and most populous city of Michigan, has deep-seated history in the automobile industry. Beginning in 1903, Henry Ford, William C. Durant, the Dodge Brothers, Packard, and Walter Chrysler established Detroit as the automobile capital of the world. The rapid growth of the industry led to the development of factories, service garages, and gas stations nationwide. By 1930, Detroit was the largest city in the United States because of the automobile industry.

By the 1920s during the Roaring Twenties, automobile manufacturers began to merge and were eventually managed by the end of the 1930s. In 1931, Henry Ford merged his company with four other automobile manufacturers and reorganized to become the Ford Motor Company. Detroit's population continued to grow during this time which attracted settlers from various backgrounds around the world. In conclusion, this brought a great deal of cultural diversity, skill, and successful industry to this region.

Exploitation

Named the largest city in Michigan and what was once the fourth largest city in the United States, Detroit has a diverse cultural history that clearly follows the phase progression of the adaptive cycle. While Detroit is mostly known for its role in the automobile industry today, its city's early population is a large part of the center of the Great lakes trade. The fur trade was an incredible industry that generated revenue between African Americans did not want to take part in exploiting European society; as they decided to trade for goods. Following the war, when the fur trade started to decline, the Native Americans and French sold the land which led to the erosion of the Atlantic Coast. What makes Detroit such a prominent location for fur traders is its location along the Detroit River, which is a major connection point between the Great lakes and the Atlantic Ocean. What makes the Detroit area so desirable to European explorers.

Clearly, Detroit's evolving identity based upon a single industry has not changed much since 1975. The establishment of the Flint River in Detroit and the industrial city's growth and expansion, along with the time which allowed for a new backdrop around the world, is evidence of the beginning great decline at a community scale and equal economy to the region.
Conservation

Close Detroit began to establish its identity due to the success of its fur trade industry, and more than people began to immigrate to the region due to the booming potential. A fire that burned in 1701 starts what would become a long period of devastation, however in retrospect it began to flourish immensely. The growing population, exploitation of land, and the rapid industrial growth of communities such as Detroit, began to set the stage for the development of cities in the United States. (1775-1800)

Many cities experienced under patterns of growth as they transition from the exploitative to conservation phase. One example is a city that is established, its residents begin to innovate in order to sustain themselves from the devastation, however in retrospect it began to flourish immensely. Like a forest, once a city is established, its residents begin to innovate in order to sustain themselves from the devastation, however in retrospect it began to flourish immensely. Once Detroit began to establish its identity due to the success of its fur trade industry. The growing population, exploitation of land, and the rapid industrial growth of communities such as Detroit, began to set the stage for the development of cities in the United States. (1775-1800)

In addition, we find that the success of these industries in the 1700’s were slowing. With the fast integration of people to these locations, environmental, technological, transportation, industrial, commercial, and entertainment advancements, were driving forces in the exponential growth of city centers like Detroit. Referring back to chapter 1, the conservation phase of the adaptive cycle works to place the system among the most of the core of the city. It is a stage in which it is not able to support the capacity of which it was operating.
As with all complex adaptive systems, there is no threshold in which the system becomes inevitably a chaotic and nonadaptive landscape. As discussed in chapter 1, this is not the

\[
\text{resilience} = \frac{\text{adaptability} \times \text{self-organization}}{\text{complexity}}
\]

It is difficult to understand the decline of Detroit's manufacturing industry, which contributed to its economic and social decline. As the manufacturing industry left Detroit, the city experienced a decline in economic activity and population. This decline was exacerbated by a lack of policies to support the city's transformation. The city was one of the first manufacturing cities to take the blow, it experienced one of the first effects but did not recover as well as New York City. According to Enelow, the “death of distance” theory cannot explain the whole story of Detroit's decline.

Enelow argues that the cost decrease of transport and communication lead to the emergence of new economic opportunities, which were captured by other regions of the country. The intense racial segregation in many neighborhoods along with the reliance on a few major economic anchors contributed to Detroit's decline. This is the case for many Rust-Belt cities; the reliance on a few major economic anchors marks a turning point for the city's future.

Since the fall of Detroit's manufacturing industry beginning in the 1950s, the city has experienced a rapid decline in population and economic activity. The city's population dropped to a million in 1970, which is a significant decline from the peak population of over 2 million in 1950. The city's economy also took a hit, and the manufacturing industry, which was the backbone of the city, began to decline. The city's credit rating dropped, and the city was forced to make significant cuts in services.

To support his analysis, Enelow draws on the resilience theory. To support his analysis, he draws on the resilience theory. The resilience of a city is defined as its ability to adapt and recover from shocks. Detroit's resilience was low, and it was unable to adapt to the changes that occurred. The city was not able to attract new industries, and it was unable to develop new sources of income. The city's population dropped rapidly, and the city was faced with a severe population decline. The city's economy was also in decline, and the city was unable to attract new businesses.

Enelow argues that the cost decrease of transport and communication lead to the emergence of new economic opportunities, which were captured by other regions of the country. The intense racial segregation in many neighborhoods along with the reliance on a few major economic anchors contributed to Detroit's decline. This is the case for many Rust-Belt cities; the reliance on a few major economic anchors marks a turning point for the city's future. The city's population dropped to a million in 1970, which is a significant decline from the peak population of over 2 million in 1950. The city's economy also took a hit, and the manufacturing industry, which was the backbone of the city, began to decline. The city's credit rating dropped, and the city was forced to make significant cuts in services.

To support his analysis, Enelow draws on the resilience theory. The resilience of a city is defined as its ability to adapt and recover from shocks. Detroit's resilience was low, and it was unable to adapt to the changes that occurred. The city was not able to attract new industries, and it was unable to develop new sources of income. The city's population dropped rapidly, and the city was faced with a severe population decline. The city's economy was also in decline, and the city was unable to attract new businesses.

Enelow argues that the cost decrease of transport and communication lead to the emergence of new economic opportunities, which were captured by other regions of the country. The intense racial segregation in many neighborhoods along with the reliance on a few major economic anchors contributed to Detroit's decline. This is the case for many Rust-Belt cities; the reliance on a few major economic anchors marks a turning point for the city's future. The city's population dropped to a million in 1970, which is a significant decline from the peak population of over 2 million in 1950. The city's economy also took a hit, and the manufacturing industry, which was the backbone of the city, began to decline. The city's credit rating dropped, and the city was forced to make significant cuts in services.

To support his analysis, Enelow draws on the resilience theory. The resilience of a city is defined as its ability to adapt and recover from shocks. Detroit's resilience was low, and it was unable to adapt to the changes that occurred. The city was not able to attract new industries, and it was unable to develop new sources of income. The city's population dropped rapidly, and the city was faced with a severe population decline. The city's economy was also in decline, and the city was unable to attract new businesses.

Enelow argues that the cost decrease of transport and communication lead to the emergence of new economic opportunities, which were captured by other regions of the country. The intense racial segregation in many neighborhoods along with the reliance on a few major economic anchors contributed to Detroit's decline. This is the case for many Rust-Belt cities; the reliance on a few major economic anchors marks a turning point for the city's future. The city's population dropped to a million in 1970, which is a significant decline from the peak population of over 2 million in 1950. The city's economy also took a hit, and the manufacturing industry, which was the backbone of the city, began to decline. The city's credit rating dropped, and the city was forced to make significant cuts in services.

To support his analysis, Enelow draws on the resilience theory. The resilience of a city is defined as its ability to adapt and recover from shocks. Detroit's resilience was low, and it was unable to adapt to the changes that occurred. The city was not able to attract new industries, and it was unable to develop new sources of income. The city's population dropped rapidly, and the city was faced with a severe population decline. The city's economy was also in decline, and the city was unable to attract new businesses.

Enelow argues that the cost decrease of transport and communication lead to the emergence of new economic opportunities, which were captured by other regions of the country. The intense racial segregation in many neighborhoods along with the reliance on a few major economic anchors contributed to Detroit's decline. This is the case for many Rust-Belt cities; the reliance on a few major economic anchors marks a turning point for the city's future. The city's population dropped to a million in 1970, which is a significant decline from the peak population of over 2 million in 1950. The city's economy also took a hit, and the manufacturing industry, which was the backbone of the city, began to decline. The city's credit rating dropped, and the city was forced to make significant cuts in services.

To support his analysis, Enelow draws on the resilience theory. The resilience of a city is defined as its ability to adapt and recover from shocks. Detroit's resilience was low, and it was unable to adapt to the changes that occurred. The city was not able to attract new industries, and it was unable to develop new sources of income. The city's population dropped rapidly, and the city was faced with a severe population decline. The city's economy was also in decline, and the city was unable to attract new businesses.

Enelow argues that the cost decrease of transport and communication lead to the emergence of new economic opportunities, which were captured by other regions of the country. The intense racial segregation in many neighborhoods along with the reliance on a few major economic anchors contributed to Detroit's decline. This is the case for many Rust-Belt cities; the reliance on a few major economic anchors marks a turning point for the city's future. The city's population dropped to a million in 1970, which is a significant decline from the peak population of over 2 million in 1950. The city's economy also took a hit, and the manufacturing industry, which was the backbone of the city, began to decline. The city's credit rating dropped, and the city was forced to make significant cuts in services.

To support his analysis, Enelow draws on the resilience theory. The resilience of a city is defined as its ability to adapt and recover from shocks. Detroit's resilience was low, and it was unable to adapt to the changes that occurred. The city was not able to attract new industries, and it was unable to develop new sources of income. The city's population dropped rapidly, and the city was faced with a severe population decline. The city's economy was also in decline, and the city was unable to attract new businesses.
Future corporations from intervening.

the communal identity and culture that exists within these neighborhoods, community-based agriculturalist Patrick Crouch, his position on this positive response of the initiative, Detroit’s urban agricultural sector jobs, providing resources, and beautifying neighborhoods. In contrast to seen as agriculture, it is a way of bringing a community together, creating farm their own land. To the residents of Detroit, urban farming is not just Program which provides families with the seeds and vacant properties to there have also been programs developed such as the Farm-A-Lot French settlers would grow crops on ribbon farms that stretched inland to vegetables and 42% for fruits. (Enelow, 11). “Urban farming is not a his findings that “the city has over 800 food-producing gardens...the renewal initiatives is its urban farming and gardens. Enelow states in Perhaps one of Detroit’s most well known and most successful urban renewal initiatives is its urban farming and gardens. Detroit’s site brings forth that the city has over 800 food-producing gardens, the city’s agricultural production could translate up to 7% of its demand for vegetables and 45% for soy. (3) The benefits of being a city with a French sisters would grow up on ribbon farms that stretched inland to these spaces have become extremely positive in urban design and community, creating a culture of Detroit’s urban farming is not just the population and the socio-economic status of the residents of Detroit. The evidence of entrepreneurship occurring within Detroit contributed in numerous city-wide and a push toward reorganization.

In recent Detroit sites such as Detroit, the success that events and the community development. has had a large impact on Detroit’s neighborhood identity and change city fabric.

- Major Infrastructure that will attract a certain visitor and
- Urban farming and gardening industry.
- Resurgence of automobile
to have a large influence on Detroit's neighborhood.

- Substantial development that will change the dynamic of the neighborhood.
- More parks
- Increasing mixed-use development
- Major Infrastructure that will improve connectivity
- Reducing sea level: Some green infrastructural projects are being developed in the downtown area such as a large underground park, which will provide open footprints these buildings provide offer great spatial flexibility allowing a variety of program typologies to exist there. These spaces have become extremely positive in urban design and community, creating a culture of entrepreneurship occurring within Detroit. The evidence of entrepreneurship occurring within Detroit contributed in numerous city-wide and a push toward reorganization.

- Art and culture museums
- Joe Louis Greenway
- Palace of Auburn Hills
- Motown Museum
- The Midtown Greenway
- River Rouge Park
- Brush Park Development
- Bedrock development breaks ground but project is yet to be completed.
- City sells land in Delray for Fitzgerald Revitalization project
- Reveals plans for East Riverfront project
- Detroit Riverfront Conservancy
- Joe Louis Greenway
- Palace of Auburn Hills
- Motown Museum is announced, goals to renovate all typologies to vacant lots.
- Ford Motor Company announces plans for Ford Neighbourhood Development.
- Link Detroit,” creating bike paths, pedestrian greenways and bike paths.
- Continual development of “The Mid” will be the largest hotel, condos, multi-family, mixed-use, retail, and “co-living” spaces.
- The Midtown Greenway
- Motown Museum
- Joe Louis Greenway
- Palace of Auburn Hills
- Motown Museum
- Ford Motor Company announces plans for Ford Neighbourhood Development.
- Link Detroit,” creating bike paths, pedestrian greenways and bike paths.
- Continual development of “The Mid” will be the largest...
What Classifies Scranton as a Rust-Belt City?

Scranton, located in Scranton, Pennsylvania, was founded in 1840 as a steel town. It is the second-largest city in the downtown region of Pennsylvania in the United States. Scranton has a rich history with contributions to the iron and steel industries. Its development was influenced by the presence of coal and iron resources in the area.

By the 1890s, Scranton began to fall victim to the decline of its precious coal and iron industry. This decline was due to the transition to coal mining and steel production methods that were more efficient and less labor-intensive. The city began to experience a release phase, indicating a period of economic stress and decline.

The growth during this area brought many cultural backgrounds to the city, with immigrants coming from various countries. Scranton grew primarily due to its initial success in the steel and iron industries. The growth of the steel industry along the Lackawanna contributed to Scranton's development. In addition, the DL&W railroad system expanded to the suburbs, sparking the development of storefronts and exploiting the area.

By the late 1800s to today, Scranton has made efforts toward revitalization. The downtown scene attracting many young artists and professionals. The city has become a cultural hub, with various museums, galleries, and theaters, demonstrating how cities can experience multiple release periods and be resilient.

The city is known for its electric lights and the creation of the first continuously operating electric light in 1880. This innovation helped the city thrive upon.

Exploitation

Scranton, Pennsylvania, known as the Electric City, was founded in 1840 by the Lackawanna Iron and Steel Company. The town was named after the village of Scranton, Pennsylvania, known as the “Electric City” was founded in 1840. The Scranton family established the settlement after the president. The name is changed to Scranton Brothers Steel Co. After the president, the village becomes the Lackawanna Company. Scranton entered into the city which helped maintain and drive its identity today. Though the development of the main industry at the time was accomplished through many efforts of developing the Scranton Steel Company and the Lackawanna Steel Company. Throughout the mid-1800s, Scranton was experiencing growth in its population due to the rise of steel making. The city saw the emergence of electric lights and the creation of the first continuously operating electric light in 1880.

It is evident that Scranton grew primarily due to its initial success in the steel and iron industries. The growth of the steel industry along the Lackawanna contributed to Scranton’s development. In addition, the DL&W railroad system expanded to the suburbs, sparking the development of storefronts and exploiting the area.

The city has become a cultural hub, with various museums, galleries, and theaters, demonstrating how cities can experience multiple release periods and be resilient.
Conservation

When the coal 50 years, Scranton continued to grow as one of the largest cities in the United States and one capital of the anthracite coal industry. With the success of the coal industry, Scranton was located on the Lackawanna Steel Company began to decline, finding itself in a more precarious position. However, the city did not turn into a major producer on the growth of Scranton, but to WWII the population grew to 140,000 due to the rise in the city of Scranton's residents who worked in the mines. Scranton is cut off from major roads and businesses began decline in the 1960s, jobs and workers sought other cities to find employment. Scranton's success in its strong and transportation infrastructure contributed to its prosperity but the city reached its peak in the early 1950s when the population reached 140,000 due to WWII when deindustrialization began. In the 1960s, urban sprawl began to accelerate which brought people into new communities and cities that had been drained of life. This trend had a huge impact on the coal mining industry in Pennsylvania. Scranton was a great example of how the coal-based mining industry could be a very good thing in a modern society. As designers, it is obvious the mining and transportation industries had a huge impact on the identity of the city. This is not to say because these industries failed it is important to acknowledge what caused the blow to Scranton's industry and economy is quite similar to Detroit and the blow to Scranton's industry and economy is quite similar to Detroit and Scranton is not the same city, which means that discussions will have a greater effect on the system. Scranton is a great example of how the coal-based mining industry could be a very good thing in a modern society. As designers, it is obvious the mining and transportation industries had a huge impact on the identity of the city. This is not to say because these industries failed it is important to acknowledge what caused the blow to Scranton's industry and economy is quite similar to Detroit and the blow to Scranton's industry and economy is quite similar to Detroit and...
Through architectural design, cities like Scranton can be re-visualized to seek to uncover the hidden potential that already exists within the city. The firm clearly targets communal nodes within the city that would bring pedestrian transportation, better quality of life, improved architecture, public space, improvement of the landscape and more. The few renderings above courtesy of DxDempsey show a selection of the locations the firm is analyzing.

Reorganization

In recent years, Scranton has become the poster child for revitalization efforts. Back in the 1980s, Scranton’s downtown was a commercial location with no direct arts district, walkable city space, barrier walls, stagnant traffic congestion, concentrated pedestrian flow, series points and strong regional connectivity through landmarks. There are a few indicators that can predict the reorganization phase and examine city-wide activities.

Scranton Gateway and Observation Tower

Scranton board牙ed architecture firm, DxDempsey has begun a revitalization project called “Scranton What If” which strives to uncover the hidden potential the Electric City. The firm clearly targets communal nodes within the city that would bring pedestrian transportation, better quality of life, improved architecture, public space, improvement of the landscape and more. The few renderings above courtesy of DxDempsey show a selection of the locations the firm is analyzing.
3.3 GREENVILLE, SOUTH CAROLINA

What Makes Greenville a Rust-Belt City?

Greenville, South Carolina is a unique case study in that it is not located within a major Rust-Belt city; however, the labor market does experience some economic trends similar to other Rust-Belt regions. Greenville’s economic history includes periods of boom and bust, with industry leading to a revitalization of the downtown area. Despite some economic downturns, Greenville has seen significant growth in recent years.

<table>
<thead>
<tr>
<th>Phase Indicators</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Settlement</td>
<td>1770</td>
</tr>
<tr>
<td>Establishment as a city</td>
<td>1794</td>
</tr>
<tr>
<td>First signs of development</td>
<td>1820</td>
</tr>
<tr>
<td>Railroad Industry</td>
<td>1850</td>
</tr>
<tr>
<td>Universities</td>
<td>1852</td>
</tr>
<tr>
<td>Population Increase</td>
<td>1854</td>
</tr>
<tr>
<td>Secession.</td>
<td>1860</td>
</tr>
<tr>
<td>Textiles becomes main industry</td>
<td>1882</td>
</tr>
<tr>
<td>Hub of the South</td>
<td>1895</td>
</tr>
<tr>
<td>Railroad expansion</td>
<td>1898</td>
</tr>
<tr>
<td>Growth in additional industry</td>
<td>1900</td>
</tr>
<tr>
<td>Emerging as a regional powerhouse</td>
<td>1920</td>
</tr>
</tbody>
</table>

Exploration

Despite Greenville, South Carolina being one of the most attractive cities to mill workers, textile production has always been a powerful economic force in the city. The history of textile production in Greenville is closely tied to the growth of the cotton industry in the South. The region’s first rail line, the Columbia and Greenville Railroad, was transformational for Greenville’s economy, as it enabled the transport of cotton to other regions. Despite some economic downturns, Greenville has seen significant growth in recent years, with revitalization efforts focusing on downtown development.

Timeline

- 1770: The region becomes a popular destination for New Englanders to relax to escape the brutal summers of the South. With the War of 1812, Greenville votes for Secession.
- 1800: The region becomes a popular destination for New Englanders to escape the brutal summers of the South. With the War of 1812, Greenville votes for Secession.
- 1850: The region becomes a popular destination for New Englanders to relax to escape the brutal summers of the South. With the War of 1812, Greenville votes for Secession.
- 1882: The region becomes a popular destination for New Englanders to relax to escape the brutal summers of the South. With the War of 1812, Greenville votes for Secession.

Figure 3.3.2

Image showing a historical timeline of Greenville's development, highlighting key events and milestones.

Notes:

- Greenville’s economy is what ignited its growth potential of Greenville. The area was once the largest producer of cotton in the region (Pristera, 68). Unlike Detroit and Scranton, Greenville proved successful as the region was now able to easily transport cotton to other regions.
- Eventually with its success, 2 more rail lines, the Richmond and Danville Air Line and the Virginia and Tennessee Air Line, opened, connecting Greenville to other regions.
- Despite some economic downturns, Greenville has seen significant growth in recent years, with revitalization efforts focusing on downtown development.
- The Great Depression (1929-39) led to economic decline as a result of the war (Pristera, 68). Greenville’s economy continued to grow post-war, with the introduction of a second rail line and the birth of steam-powered textile mills.

References:

By the start of the conservation phase for Greenville, its textile industry was booming. New mills were being constructed and Greenville became the host for the Southern Textile Exhibition where it was named the “Textile Center of the South” (Pristera, 72). The success of this event made Greenville a widely known city that would continue to host the exposition. Up until the 1920s, Greenville continued to grow its downtown infrastructure which established it as the central business district for the region.

With a shift in textile production caused by the Boll Weevil epidemic and the introduction of a new synthetic material, Rayon, the conservation period for Greenville did not last very long. There was hope that with diversified factory lines and Northern mills moving to Greenville, the textile industry would continue to prosper, but the effects of the Great Depression were just too strong for the city to withstand.

The beginning of the 1930s was marked as one of the worst economic periods in Greenville’s history. Communications were cut from city hall, and many government workers like police men and firefighters were paid 5 months late. Furman University and the Women’s college were forced to combine, and the General Textile Strike of 1934 led to increased security. Following this devastation, the newly elected President Franklin D. Roosevelt established New Deal Programs which helped to improve buildings, infrastructure, parks, and schools. This took a while, but slowly Greenville began to recover.

Despite the Great Depression, Greenville is one of the few cities that did not take a total blow to its industry, with only 2 mills closing during its release phase. Greenville is an example of a city that was resilient in the face of a disturbance.
The city's residents say they enjoy the mix of an urban and suburban developments currently in the works. Due to its success, Greenville on a road of rapid development with 21 high-profile to this region (Kennedy, 4). The rapid growth in population has sent incentives, investment in infrastructure, etc. are attracting employers culture background have a major effect on growth and industry.

After 50 years of diversifying industry, economic factors are the driving force in the region that determines where new development emerge (Kennedy, 4). The region begins to diversify industries, shielding Greenville from economic decline, prevented Greenville from falling 1950-1965. Greenville Technical College opens. State's first comprehensive college opens. By 1968, all 6 school districts are consolidated to 1. Greenville County helps bring it to prosperity. The cultural background of Greenville County helped bring it to prosperity. The cultural background of Greenville County helped bring it to prosperity.

Greenville has become a desired location for people to visit and reside in. The proximity to public amenities, and the prestige school district. The city's residents say they enjoy the mix of an urban and suburban developments currently in the works. Due to its success, Greenville on a road of rapid development with 21 high-profile to this region (Kennedy, 4).

Reorganization

Greenville's valuable assets of its natural landscape, and cultural background have a major effect on growth and industry. Transformed elements of transportation, textile reminders, the natural environment, and people's preferences to live in an authentic environment, the city's slow development is on the rise. Greenville is a slow driver in reorganization to attract economic growth, and has not seen much change. By repositioning its assets and creating development around the wellbeing of the community, Greenville has become a desired location for people to visit and reside in.
3.4 CONCLUSIONS

Case Study Findings

The diagram shows the phase overlaps between each case study on an evolutionary timeline. The associated colors for each phase were overlapped to show where each case study matched up with one another along their phase; the dates were extracted.

Spatial Dynamics

Exploitation

- Community Engagement
- Identity
- Economy

Conservation

- Population Growth
- Decline of Industry

Release

- Loss of Industry
- Economic Decline

Reorganization

- Positive Investment
- Historical Preservation

Temporal Dynamics

- Investment
- Immediate Infrastructure
- Historical Infrastructure

Spatial Dynamics

- Development of Local Community
- Economic Growth

Design Qualities as Related to Adaptive Cycle Phases

Exploitation

- Community Engagement
- Primary Corridor Identity

Conservation

- Interest in development of any area due to potential for growth

Release

- Interest in economic recovery and revitalization

Reorganization

- Interest in cultural revitalization

Figure 3.4.1

Figure 3.4.2
CH.4 SITE BACKGROUND: UTICA, NY

4.1 Utica, NY Within the Rust-Belt
4.2 Utica, NY Through the Adaptive Cycle
 4.2.1 Utica Imagery
 4.2.2 Utica, NY V.S. Case Studies

The Model HOLISTIC
The city of Utica, located in the Central Valley Region of Northwestern New York State in Oneida County has been known for its dominance in the manufacturing and textile industry up until the late 1920’s. Comparable to other cities in the region, most of Utica’s successful industrialization was due to the emergence of the Erie Canal in 1825. During the beginning of industrialization, Utica thrived off big business and the influx of immigrants who were able to provide labor to support these large factories. The problem was, the city completely relied on only these factories as their main economic engine, and so did the residents who resided there. Up until 1910, the textile industry began to decline and after World War II, it completely collapsed.

Today, Utica classifies as a tertiary Rust-Belt city. This is because the capital of New York, Albany, is a primary Rust-Belt city. Utica is an older industrial city that began transitioning from textiles to tool & dye manufacturing around 1920. Utica sought to disseminate much of their urban fabric, leaving the city unrecognizable from what it was like 50 years ago.

What Classifies Utica as a Rust-Belt City?

The city was once known as the ‘City of 453 Mills’. The city of Utica, located in the Central Valley Region of Northwestern New York State in Oneida County has been known for its dominance in the manufacturing and textile industry up until the late 1920’s. Comparable to other cities in the region, most of Utica’s successful industrialization was due to the emergence of the Erie Canal in 1825. During the beginning of industrialization, Utica’s textile industry began to suffer as they were competing with mills in the south who offered better working conditions, lower non-union labor costs, and more innovative technologies. With that, the production of Utica’s textile mills began to decline and after World War II, it completely collapsed.

Today, Utica classifies as a tertiary Rust-Belt city. This is because the capital of New York, Albany, is a primary Rust-Belt city. Utica is an older industrial city that began transitioning from textiles to tool & dye manufacturing around 1920. Utica sought to disseminate much of their urban fabric, leaving the city unrecognizable from what it was like 50 years ago.
Utica is located in the county of Oneida, which lies in Central New York along the Mohawk River. The city was first settled in 1704. The Dutch and Germans settled the area before the city was established. The city was destroyed by the French in 1755 but was later rebuilt and connected to Albany and Utica.

By the end of the 1700’s, the area was a major manufacturing/industrial center due to its proximity to the newly established Erie Canal. With the rise in industry, many people began to settle in the area.

In 1791-1810, Utica was incorporated as a village. The city rapidly grew into a major city, serving as a center for industry and population continued to rise.

By the end of the 1700’s, by the draw of a name from a hat, Utica was selected to establish the city as a site. Later, the city was destroyed by the British in 1774.

In 1794, Utica was incorporated as a village. The city rapidly grew into a major center, and was eventually expanded to Albany.

Utica is located in the county of Oneida which lies in Central New York along the Mohawk River. The city was first settled in 1704. The Dutch and Germans settled the area before the city was established. The city was destroyed by the French in 1755 but was later rebuilt and connected to Albany and Utica.

By the end of the 1700’s, the area was a major manufacturing/industrial center due to its proximity to the newly constructed Erie Canal. With the rise in industry, many people began to settle in the area.

In 1791-1810, Utica was incorporated as a village. The city rapidly grew into a major center, and was eventually expanded to Albany.

In 1794, Utica was incorporated as a village. The city rapidly grew into a major center, and was eventually expanded to Albany.

Utica is located in the county of Oneida which lies in Central New York along the Mohawk River. The city was first settled in 1704. The Dutch and Germans settled the area before the city was established. The city was destroyed by the French in 1755 but was later rebuilt and connected to Albany and Utica.

By the end of the 1700’s, the area was a major manufacturing/industrial center due to its proximity to the newly constructed Erie Canal. With the rise in industry, many people began to settle in the area.

In 1791-1810, Utica was incorporated as a village. The city rapidly grew into a major center, and was eventually expanded to Albany.

In 1794, Utica was incorporated as a village. The city rapidly grew into a major center, and was eventually expanded to Albany.

Utica is located in the county of Oneida which lies in Central New York along the Mohawk River. The city was first settled in 1704. The Dutch and Germans settled the area before the city was established. The city was destroyed by the French in 1755 but was later rebuilt and connected to Albany and Utica.

By the end of the 1700’s, the area was a major manufacturing/industrial center due to its proximity to the newly constructed Erie Canal. With the rise in industry, many people began to settle in the area.

In 1791-1810, Utica was incorporated as a village. The city rapidly grew into a major center, and was eventually expanded to Albany.

In 1794, Utica was incorporated as a village. The city rapidly grew into a major center, and was eventually expanded to Albany.

Utica is located in the county of Oneida which lies in Central New York along the Mohawk River. The city was first settled in 1704. The Dutch and Germans settled the area before the city was established. The city was destroyed by the French in 1755 but was later rebuilt and connected to Albany and Utica.

By the end of the 1700’s, the area was a major manufacturing/industrial center due to its proximity to the newly constructed Erie Canal. With the rise in industry, many people began to settle in the area.

In 1791-1810, Utica was incorporated as a village. The city rapidly grew into a major center, and was eventually expanded to Albany.

In 1794, Utica was incorporated as a village. The city rapidly grew into a major center, and was eventually expanded to Albany.

Utica is located in the county of Oneida which lies in Central New York along the Mohawk River. The city was first settled in 1704. The Dutch and Germans settled the area before the city was established. The city was destroyed by the French in 1755 but was later rebuilt and connected to Albany and Utica.

By the end of the 1700’s, the area was a major manufacturing/industrial center due to its proximity to the newly constructed Erie Canal. With the rise in industry, many people began to settle in the area.

In 1791-1810, Utica was incorporated as a village. The city rapidly grew into a major center, and was eventually expanded to Albany.

In 1794, Utica was incorporated as a village. The city rapidly grew into a major center, and was eventually expanded to Albany.

Utica is located in the county of Oneida which lies in Central New York along the Mohawk River. The city was first settled in 1704. The Dutch and Germans settled the area before the city was established. The city was destroyed by the French in 1755 but was later rebuilt and connected to Albany and Utica.

By the end of the 1700’s, the area was a major manufacturing/industrial center due to its proximity to the newly constructed Erie Canal. With the rise in industry, many people began to settle in the area.

In 1791-1810, Utica was incorporated as a village. The city rapidly grew into a major center, and was eventually expanded to Albany.

In 1794, Utica was incorporated as a village. The city rapidly grew into a major center, and was eventually expanded to Albany.

Utica is located in the county of Oneida which lies in Central New York along the Mohawk River. The city was first settled in 1704. The Dutch and Germans settled the area before the city was established. The city was destroyed by the French in 1755 but was later rebuilt and connected to Albany and Utica.

By the end of the 1700’s, the area was a major manufacturing/industrial center due to its proximity to the newly constructed Erie Canal. With the rise in industry, many people began to settle in the area.

In 1791-1810, Utica was incorporated as a village. The city rapidly grew into a major center, and was eventually expanded to Albany.

In 1794, Utica was incorporated as a village. The city rapidly grew into a major center, and was eventually expanded to Albany.
With the industrial identity of Utica rapidly declining, the next 50 years would be spent on recovery in the beginning of the 1970s. Utica attempted to begin efforts of rejuvenation beginning with their First Comprehensive Master Plan. The plan was strongly influenced by urban renewal and the arterial highway concept. The urban grid which was originally influenced by radial routes and geographic features mirrored classical design elements found in the plans of Washington and Paris. When the arterial was constructed it disrupted this grid cutting off many neighborhoods and limiting growth.

Following the emergence of such an imposing infrastructure, Utica began to fall into disrepair. Buildings began collapsing, businesses were closing, and people were migrating to other cities or the suburbs away from Utica.

As the industrial identity of Utica rapidly declined, the next 50-60 years would be spent on recovery in the beginning of the 1970s. Utica attempted to begin efforts of rejuvenation beginning with their First Comprehensive Master Plan. The plan was strongly influenced by urban renewal and the arterial highway concept. The urban grid which was originally influenced by radial routes and geographic features mirrored classical design elements found in the plans of Washington and Paris. When the arterial was constructed it disrupted this grid cutting off many neighborhoods and limiting growth. Following the emergence of such an imposing infrastructure, Utica began to fall into disrepair. Buildings began collapsing, businesses were closing, and people were migrating to other cities or the suburbs away from Utica.

With the industrial identity of Utica rapidly declining, the next 50 years would be spent on recovery in the beginning of the 1970s. Utica attempted to begin efforts of rejuvenation beginning with their First Comprehensive Master Plan. The plan was strongly influenced by urban renewal and the arterial highway concept. The urban grid which was originally influenced by radial routes and geographic features mirrored classical design elements found in the plans of Washington and Paris. When the arterial was constructed it disrupted this grid cutting off many neighborhoods and limiting growth. Following the emergence of such an imposing infrastructure, Utica began to fall into disrepair. Buildings began collapsing, businesses were closing, and people were migrating to other cities or the suburbs away from Utica.

As of the last 10 years from 2010-2020, Utica has moved into the reorganization phase. The initiative began with the introduction of industry and focus on healthcare and educational sectors. The mayor of Utica announced the Downtown Revitalization Initiative (DRI) granting $10 million to Utica to revitalize the community. The main focus of these investments will be in the districts of Singer Carrousel, German Street and Varick Street. According to the mayor, the $10 million will go towards constructing pedestrian right-of-ways between mixed-use developments, constructing pedestrian right-of-ways between mixed-use developments, and Varick Street. According to the mayor, the $10 million will go towards constructing pedestrian right-of-ways between mixed-use developments, constructing pedestrian right-of-ways between mixed-use developments, and Varick Street. According to the mayor, the $10 million will go towards constructing pedestrian right-of-ways between mixed-use developments, constructing pedestrian right-of-ways between mixed-use developments, and Varick Street. According to the mayor, the $10 million will go towards constructing pedestrian right-of-ways between mixed-use developments, constructing pedestrian right-of-ways between mixed-use developments, and Varick Street. According to the mayor, the $10 million will go towards constructing pedestrian right-of-ways between mixed-use developments, constructing pedestrian right-of-ways between mixed-use developments, and Varick Street. According to the mayor, the $10 million will go towards constructing pedestrian right-of-ways between mixed-use developments, constructing pedestrian right-of-ways between mixed-use developments, and Varick Street. According to the mayor, the $10 million will go towards constructing pedestrian right-of-ways between mixed-use developments, constructing pedestrian right-of-ways between mixed-use developments, and Varick Street.
4.2.1 Utica Imagery

4.2.2 Utica V.S. Case Studies

The diagram shows the phase overlaps between each case study on an evolutionary timeline compared to the data of Utica.

Common Phase Transition Forces

Exploitation:
- Detroit: Settlement, Infrastructure, Establishment of Industry.
- Greenville: Settlement, Establishment of Industry, Transportation, Universities.

Conservation:
- Scranton: Population growth, industry declines by end of phase.
- Greenville: Growth of Industry, decline by end of phase.
- Utica: Growth of Industry, Transportation Experience, Sun, Cotton.

Release:
- Detroit: Loss of industry, population drops, economy low.
- Scranton: Loss of industry, Obliteration of Electric Streetcar, Loss of City Identity.
- Greenville: Great Depression, system does not fully collapse.

Reorganization:
- Scranton: Restoration, Public Revitalization.
- Utica: Master Plan, Funding, Restoration, Healthcare and Education Focus.
5.1 Using Kevin Lynch’s 5 Elements of a City to Enhance Design Qualities

5.2 District Breakdown Related to Design Qualities

5.3 The Adaptive Cycle as Scalar Panarchy

5.3.1 Sense of Place
5.3.2 Isolated Adaptive Cycle Districts
5.3.3 Completing the Network
5.3.4 Focus of Design

CH.5 DESIGN METHODOLOGY
The Model Holistic design methodology

Node
- The strategic spots in a city into which an observer can enter, and which are the intensive foci and from which the person is traveling.

Edge
- May be barriers, more or less penetrable, which close off one region to another, or they may be seams, lines along which two regions are related and joined together.

Path
- The streets, sidewalks, trails, and other channels in which people travel. Lynch noted that paths were often the predominant elements in people's image with the other elements being arranged and related along paths.

District
- Areas characterized by common characteristics; these are the medium to large areas, which observers mentally enter ‘inside of’ and/or have some common identifying character.

Landmark
- Landmarks key physical characteristics of a city, some aspect that is unique or memorable in the context.

Figure 5.1.1

Figure 5.1.2

5.1 USING KEVIN LYNCH’S 5 ELEMENTS OF A CITY TO ENHANCE DESIGN QUALITIES

Node
- Activating intersections between major meeting points. Create a sense of identity at these nodes, different from the others to distinguish them. Allow clear access for way-finding and directionality.

Edge
- Investment in edge will strengthen the overall identity of the surrounding district. The investment will improve infrastructure, traffic patterns and encourage positive development around them.

Path
- Creating channels along the path will encourage the observer to use them as a way to position in relation to districts. The path should be easy to travel, engaging, and complementary of the surrounding context.

District
- Clearly defining the boundary of a district through landscape design or active programming to engage edge and create a sense of place.

Landmark
-Honoring the character of each district by embedding program that strengthens neighborhood connectivity to public/civic use spaces.

Figure 5.1.3

Figure 5.1.4

Endnotes
- Historical Landmarks are to be highlighted and easy to access by car or pedestrian. They should include active space and program around them where one could learn about the landmark.

Figure 5.1.5
5.2 DISTRICT BREAKDOWN RELATED TO DESIGN QUALITIES

The model shows the connectivity between the major districts of the MVHS Hospital/Healthcare District, Genesee St. Commercial Corridor, Harbor Point, and Bagg's Square. The goal of the model is to activate these districts based on their positioning within the adaptive cycle. Each district is associated with a phase and compared to the three design qualities of Spatial Dynamism, Investment, and Historical Infrastructure to influence design decisions.

5.3 THE ADAPTIVE CYCLE AS A SCALAR PANARCHY

Based on the ecological structure diagram showing nested adaptive cycles, each district interacts across scales at key phases of the adaptive cycle. The nested adaptive cycle involving each district is a part of the larger adaptive cycle of the city of Utica. Whatever design opportunities occur at these smaller, nested adaptive cycles will unfold either positively or negatively to the host cycle. Bagg's Square is the highest nested adaptive cycle, which satisfies all qualities of spatial dynamism, investment, and historical infrastructure. If it is not engaged and feeding, if other nested adaptive cycles do not contribute to the host or appear to be in isolation, the host system will benefit and be on an upward path of growth and resiliency.
5.3.1 Sense of Place

DISTRICTS AT PLAY:

- Bagg’s Square East/West
- The Brewery District (Globe Mills)
- MVHS Hospital/Healthcare District
- Genesee Street Commercial Corridor
- MWP AI Arts District
- Bleeker International Corridor

QUALITIES OUTLINED AREAS:

- Spatial Dynamism
- Investment
- Civic Realm and Public Space
- Historical Infrastructure
- Educational Qualities
- Cultural and Art Hubs
- Ethnic and Religious Centers
- Places:
 - Bagg’s Square East/West
 - Bleeker International Corridor
 - Genesee Street Commercial Corridor
 - MWP AI Arts District
 - The Brewery District (Globe Mills)
 - MVHS Hospital/Healthcare District

5.3.2 Isolated Adaptive Cycle Districts

Based upon the catalog of qualities and places within Downtown Utica, it is possible to identify the majority of activity and density occurring along Genesee St. and extends to the west to Bagg’s Square. These qualities only pertain to the energy of downtown and are meant to extend to the surrounding developments.

The major design issue at hand is the isolation of nested adaptive cycle districts, most specifically, The Brewery District (Globe Mills), Parkview Point, and Bleeker International Corridor (Chancellor Park). Due to their isolation, it is difficult for these nested adaptive cycles to feed off of each other and contribute to the host cycle.

The design opportunity will focus on re-incorporating isolated nested adaptive cycles into the pathway of connected nested adaptive cycles. Breaking isolated nested adaptive cycles will bring into the energy of the larger host cycle and will enhance design qualities and sense of place that these isolated districts currently lack.

Data sourced from Rust 2 Green and Utica Observer Dispatch.

Figure 5.3.2

Figure 5.3.3
5.3.3 Completing the Network

The Brewery District (Globe Mills) has the greatest design potential as it is the most isolated nested adaptive cycle due to the interstate, which disconnects it from all other nested adaptive cycle districts.

If the design opportunity incorporated The Brewery District (Globe Mills) back into the host cycle, it would re-activate the Brewery District (Globe Mills) and re-connect it to the Genesee St. Commercial Corridor, MVHS Hospital/Healthcare District and Bagg’s Square West. These districts will additionally touch other nested adaptive cycle districts, therefore the momentum generated at The Brewery District (Globe Mills) will influence the trajectory of these districts.

Prioritizing nodes along the new path that connects The Brewery District (Globe Mills), MVHS Hospital/Healthcare, and Bagg’s Square West will introduce qualities of spatial dynamism, investment, and historical infrastructure into these districts to put them on a positive growth trajectory and complete the downtown district network.

Data sourced from Rust 2 Green and Utica Observer Dispatch.

5.3.4 Focus of Design

The design will focus on connecting the Brewery District (Globe Mills), MVHS Hospital/Healthcare, and Bagg’s Square West. Strengthening the connection will anchor the Downtown core by having all districts unified by taking action on these districts. Their combined adaptive cycles will work in unity positively to the host cycle: Utica as a city.

Data sourced from Rust 2 Green and Utica Observer Dispatch.
CH.6 DISTRICT ANALYSIS

6.1 Bagg’s Square West
6.2 Mohawk Valley Health System (MVHS)
6.3 The Brewery District (Globe Mills)
6.1 Bagg's Square West

Master Plan Analysis

- Bagg’s Square West provides a wide expanse that can be a gateway into the Brewery District.
- The path continues to the Erie Canal Linear Park in the coming years.
- Carriageway and pedestrian pathways through the wooded glade.
- Green buffer between pedestrians, park, and Oriskany.
- Erie Canal Park is a wayfinding element and commemorates the old path of the Erie Canal.

Design Opportunities

- Buchard Lane and Canal Street become a designated pedestrian only pathway.
- Paved areas along retail for outdoor use and safe pedestrian gathering.
- Green buffer between pedestrians, park, and Oriskany.
- Erie Canal Park is a wayfinding element and commemorates the old path of the Erie Canal.

Site of MVHS

- Node 1: Oriskany St./Genesee St.
- Node 2: Genesee St./Broadway

Fails to Address:

- Canal Street fails to connect to entry of hospital on Broadway.
- The canal feature does not travel to Auditorium or to continue into the Brewery District.
- Connection to MVHS is not reinforced. Erie Canal Park or Canal Street should carry through to connect to MVHS pedestrian pathway.

Bagg’s Square West represents all qualities outlined in the rubric (spatial dynamism, investment, and historical infrastructure).

The path study examines both Nodes 1 and 2. Node 2 being the weakest and 1 being the strongest. Node 1 is the strongest because it engages multiple districts and creates opportunities for decision making along the path. The Erie Canal Linear Park continues beyond Bagg’s Square West to Baggs Square East to extend the path and engage edge conditions. Node 2 is the weakest due to its lack of connection between MVHS and the Brewery District. In the South of Node 2, the MVHS District, there is great potential to extend the Canal St. pedestrian path to Broadway, which will join these districts seamlessly.
6.2 MOHAWK VALLEY HEALTH SYSTEM (MVHS)

Master Plan Analysis

- Automotive driven design; not many safe pedestrian pathways.
- Building design disrupts historic urban grid.
- Poor entry into hospital campus.
- Surface parking is adjacent to Oriskany St.; does not create a dynamic urban environment; ignores building and street relationship; destroys urban identity original to city.
- Pedestrian pathways lead to no destination; creates an unsafe path; does not encourage people to walk down.
- Does not connect to Utica AUD or Brewery District.

Design Opportunities

- Connect Erie Canal Linear Park to MVHS pedestrian pathway.
- Create a safe path through MVHS campus that connects to Bagg’s Square and The Brewery District.
- Add a level of parking to deck to eliminate excess surface parking.
- Strengthen edge along arterial; bring in dynamic program.
- Fails to address:
 - Bagg’s Square entertainment and Brewery District.
 - Pedestrian centered design.
 - Ignores urban edge conditions.

Node 2 being the weakest node from the Bagg’s Square West analysis needs a stronger connection to the MVHS district. This could be accomplished by enforcing edge at the MVHS site. The existing plan calls for surface parking along Oriskany St., discouraging pedestrian movement and isolating the MVHS district even further. By extending Canal St. from Bagg’s Square West through MVHS, a pedestrian could experience the hospital site and have a direct connection to the Brewery District. Introducing this path will encourage development at the weak edges.
6.3 THE BREWERY DISTRICT (GLOBE MILLS)

Master Plan Analysis
- Recommend Old Matt Brewing Co along Varick St. & Spring St to promote preservation of
- Recommend new walkways on Varick St.
- Recommend new open space for neighborhood or
- Social hubs in the community
- Recreational elements for neighborhood
- Social hubs in the community
- Protected pedestrian paths
- Dedicated paved automobile paths
- Safe wayfinding
- Boulevards
- Globe Mills
- Matt Brewing Co.
- Needle Sculpture

Design Opportunities
- Continue similar language down Varick St. to engage businesses and connect to MVHS.
- Area in front of Matt Brewing Co. along Varick St. is given back for pedestrian use.
- Business centralized
- Design sets up entrance into East/West Utica.
- Recreational elements are introduced for neighborhood use.
- Social hub for the community
- Protected pedestrian paths
- Dedicated paved automobile paths
- Safe wayfinding
- Boulevards

Fails to Address:
- Must tie into Varick St. to engage entire Brewery community and connect to Downtown
- entertainment and hospital district.

The master plan for Globe Mills is quite successful, however, to connect all 3 districts it will be necessary to continue the language of the Erie Canal Linear Park down Lafayette St. and then Varick St. naturally, this will create an urban corridor that will connect both the Baggs’ Square entertainment district and the Brewery District, which is also a community destination. The new pathway would parallel a wide way for people to travel between events and environment friendly of the neighborhood. By “greening” Varick St., naturally, this intervention would bleed into surrounding side streets and would increase resiliency within the neighborhood. The new corridor would be a people-friendly link from the Globe Mills development to Old Matt Brewing Co. and directly into the Brewery District.
7.1 Design Intent

7.1.1 Community Investment

7.1.2 Node Weaknesses / Vision

7.2 Design Qualities

7.3 Nodes

7.3.1 Node 1 - Oriskany St. & Genesee St.

7.3.2 Nodes 2 and 3 - Broadway & Oriskany St., Broadway & Lafayette St.

7.3.3 Nodes 4 and 5 - Columbia St. & Lafayette St.

7.3.4 Node 6 - Court St. & Varick St.
7.1 DESIGN INTENT

Phase 1 (3-5 year investment) - The model holistic design intervention, Utica Citywalk, engages Bagg’s Square West Reorganization Districts. The MVHS Arts District, Bleeker International Corridor, and Genesee Street Commercial Corridor. All districts now exist in the reorganization phase and links the isolated adaptive cycle districts to the Genesee St. Commercial Corridor. The result of this transfer of energy will generate additional nodes in which new development can occur. This path engages Bagg’s Square West, MVHS, and The Brewery District. Multi-family housing, neighborhoods, City Hall, MWP AI expansion, new entrance, outdoor plaza, new bathrooms, LED light fixtures, new offices, and luxury boxes. There are plans to develop what is called “The U-District” adjacent to the auditorium which is a proposed sports and recreation hub. This development will occupy the neighboring zombie properties of Bagg’s Square West.

MVHS is the newest large scale development in Downtown Utica. The hospital is estimated to generate 1,500 jobs and $480 million state-funded grant for renovations which included a 26,000 sf expansion, new entrance, outdoor plaza, new bathrooms, LED light fixtures, new offices, and luxury boxes. There are plans to develop what is called “The U-District” adjacent to the auditorium which is a proposed sports and recreation hub. This development will occupy the neighboring zombie properties of Bagg’s Square West.

MVHS is the newest large scale development in Downtown Utica. The hospital is estimated to generate 1,500 jobs and $480 million state-funded grant for renovations which included a 26,000 sf expansion, new entrance, outdoor plaza, new bathrooms, LED light fixtures, new offices, and luxury boxes. There are plans to develop what is called “The U-District” adjacent to the auditorium which is a proposed sports and recreation hub. This development will occupy the neighboring zombie properties of Bagg’s Square West.

MVHS is the newest large scale development in Downtown Utica. The hospital is estimated to generate 1,500 jobs and $480 million state-funded grant for renovations which included a 26,000 sf expansion, new entrance, outdoor plaza, new bathrooms, LED light fixtures, new offices, and luxury boxes. There are plans to develop what is called “The U-District” adjacent to the auditorium which is a proposed sports and recreation hub. This development will occupy the neighboring zombie properties of Bagg’s Square West.

MVHS is the newest large scale development in Downtown Utica. The hospital is estimated to generate 1,500 jobs and $480 million state-funded grant for renovations which included a 26,000 sf expansion, new entrance, outdoor plaza, new bathrooms, LED light fixtures, new offices, and luxury boxes. There are plans to develop what is called “The U-District” adjacent to the auditorium which is a proposed sports and recreation hub. This development will occupy the neighboring zombie properties of Bagg’s Square West.
7.2 Design Qualities

Spatial Dynamics: Make streets feel special

Interventions that support walkability as well as other activities such as biking, social, events, and fun, create safe streets. The sidewalk could be widened for a bike path, buildings can be resurfaced with colorful hard-scape for a more dynamic street surface. The lighter colored paving indicates the surfaces where pedestrians can adapt to a shared street. A shared street blurs the divide between the pedestrian and the cyclist, creating an aesthetically pleasing streetscape that vehicles emit. Making streets less auto dominated reduces traffic speeds, therefore creating less injury.

Interventions that reduce the amount of vehicles and the speed at which vehicles move. Speed Bumps are also low cost, but removes some parallel parking spaces for parklets, curb bulbs, or bike storage. Curb bulbs or chicanes (alternating curb bulbs) reduce the width of the street prompting vehicles to move slower through the street. Speed Bumps are also low cost and easy to install.

Creating safe streets

Interventions that support walkability as well as other activities such as biking, social, events, and fun. These interventions are designed to create safe streets, pedestrian surface. The lighter colored paving indicates the surfaces where pedestrians can adapt to a shared street. A shared street blurs the divide between the pedestrian and the cyclist, creating an aesthetically pleasing streetscape that makes streets feel special.

The sidewalk could be widened for a bike path, buildings can be resurfaced with colorful hard-scape for a more dynamic street surface. The lighter colored paving indicates the surfaces where pedestrians can adapt to a shared street. A shared street blurs the divide between the pedestrian and the cyclist, creating an aesthetically pleasing streetscape that makes streets feel special.

Historical Infrastructure: Create Memory Pieces/landmarks

Historical Infrastructure: Create Memory Pieces/landmarks

For neighborhood scenarios or tertiary intersections, traffic calming elements are necessary to create a safe environment for pedestrians. Curb bulbs or chicanes (alternating curb bulbs) reduce the width of the street prompting vehicles to move slower through the street. Speed Bumps can also be used not only to mitigate traffic speed, but also to improve the opportunity to become pocket parks. Community Gardens are a low cost investment that influence community, building and improved social properties.

Strengthen Neighborhood Interaction

Adapting streets to accommodate pedestrians encourages and celebrates community and neighborhood pride. Boxy curvilinear and medians. These changes provide a positive asset on individual local business centers and residents.

Design Adaptable Streets

 ثناء سالم

Figure 7.1.3

Design adaptable streets

Figure 7.2.1

Create Safe Streets

Interventions that support walkability as well as other activities such as biking, social, events, and fun. These interventions are designed to create safe streets, pedestrian surface. The lighter colored paving indicates the surfaces where pedestrians can adapt to a shared street. A shared street blurs the divide between the pedestrian and the cyclist, creating an aesthetically pleasing streetscape that makes streets feel special.

Identify Human and Ecological Well-being

The purpose of activating streets is to increase the health and mobility of the user. It creates a stronger connection between the user and the community. These interventions are supported ecological systems through interacting pedestrian and pocket parks. There is good need for these amenities in dense urban contexts.

Investment: Use downtown infrastructure as transitional installations

Figure 7.2.2

Figure 7.2.3

Downtown Configuration

Figure 7.2.1

Main Street Configuration

Figure 7.2.3

Residential Street Configuration
7.3 NODES

7.3.1 Node 1 - Oriskany St & Genesee St

Node 1 will form a proper gateway between Downtown Utica and Genesee Towers by providing pedestrian and bicycle mobility and connectivity. To support the neighborhood around Genesee Towers, qualities of historic infrastructure and investment will be implemented to encourage adaptive re-use of buildings and create a new active corridor.

The new street configuration will program the relation to be an active public space with low friction traffic and safe walking paths. The enhanced sidewalks will support building frontages and create a gateway pathway leading to the Utica Auditorium.

The new street configuration will program the relation to be an active public space with low friction traffic and safe walking paths. The enhanced sidewalks will support building frontages and create a gateway pathway leading to the Utica Auditorium.

Strengthen edge; eliminate surface parking and invest in a pocket park. Create a dynamic marketplace in parking lot for public use and events.

7.3.1 Node 1 - Oriskany St. & Genesee St.

The Oriskany St. Elongated Node connects Genesee St. to historic Bagg’s Square West. The scheme introduces the “Utica City Walk” which connects all nodes in the Downtown area through a series of pedestrian-oriented features. In memory of the Erie Canal State parks are created to extend the nearby Erie Canal Park to Downtown. The central park introduced nature back into Bagg’s Square West which is rather industrial. Shared streets slow down traffic while also providing social space within the Park. Bicycle paths are created between businesses and demand for a multi-modal transportation system. Zebra crossings are added, islands or painted islands are introduced, and parking or pedestrian-only ways are created with street light guidance providing visual separation on shared streets for businesses. The Oriskany St. Elongated node will create a safe street experience by prioritizing pedestrian paths, improving lighting, traffic-calming, adding landscape buffers, and creating designated social spaces.
Figure 7.3.3 Existing plan shown

- Zombie Property: Create Pocket Park
- Surface parking = future building infill
- Surface parking = social space
- Surface parking = farmer’s market
- Street transformation
- Large community park
- Activated residual space (social/retail)
- Increased density (1-3 stories)
- Baggs Square West Marketplace

Figure 7.3.4 Shared street + market
- City Agencies
- Local Businesses
- Neighborhood Associations
- Property Owners
- Dept. of Transportation

Figure 7.3.5 Low cost investment
- Marked Event at Zombie Property
- Street Art/Art Parks
- Pedestrian Accessibility
- Activity Programming

Low Cost Investment
- 0-3 years
- Partners Involved:
 - Neighborhood Groups
 - City Agencies
 - Local Businesses
 - Property Owners
 - Dept. of Transportation

Re-investment and Refurbishment
- 3-5 years
- Partners Involved:
 - Neighborhood Groups
 - City Agencies
 - Local Businesses
 - Property Owners
 - Dept. of Transportation

Density, Major Investments, Preservation
- 6-10 years
- Partners Involved:
 - Neighborhood Groups
 - City Agencies
 - Local Businesses
 - Property Owners
3-5 YEARS (Low Cost Investment in Farmer’s Market)

6-10 YEARS (Future Investment in colorful mosaics for a dynamic, adaptable space)

West Bagg’s Marketplace

Oriskany St. Westbound

Create:

Create:
The Model Holistic DESIGN INTERVENTION: UTICA CITYWALK

Marysia LaRosa

Nodes 2 & 3 will continue the qualities developed at Node 1 to reach the site of the Utica Auditorium and MVHS Hospital. Centres of historic cultivation and renewal will be articulated to encourage the adaptive reuse of buildings, encourage new development, and create safer pedestrian/walkway points.

Node 2 will position the nodes to be an extension of the City Walk Staged Node. The enhanced sidewalks will support building frontages and create a pedestrian path leading to the Utica Auditorium. The City Walk discourages the preoccupation of the auto and encourages pedestrian traffic through the node. Node 3 which marks the side entrance of the MVHS, will use low-cost speed bumps to eliminate traffic for the staff working at the hospital and nearby city hall. The use of these areas will encourage future density along Lafayette St extending back to Genesee St.

Node 2 - Broadway & Oriskany St.

The Oriskany St. Elongated Node connects to Nodes 2 & 3. These nodes echo the design intent of Node 1 while allowing the Utica City Walk to extend further toward the Utica Auditorium, MVHS, and Brewery District.

Nodes 2 & 3 implement qualities of investment and spatial dynamism. This growth at Node 2 will come as a result of Node 1 and will further solidify the identity of Bagg’s Square West creating a complete neighborhood.

The Utica Auditorium, which hosts hockey games, is a popular event amongst Utica residents. The growth within this sports industry will encourage density adjacent to it with hockey facilities and businesses such as restaurants and retail.

Node 3 will act as an extension point to support future development. The safer intersection will be suitable for nearby hospital and city hall staff.

The Oriskany Elongated Node, which connects to Nodes 2 & 3, is a transition point between the Oriskany Elongated Node and Genesee St. It will accommodate the traffic required to service the Utica City Walk.

Node 3 - Traffic Calming - Broadway & Lafayette St.

Proposed Retail

Proposed Utica Aud. Facilities

Proposed Retail

Proposed Retail

Proposed Utica Aud. Facilities

Figure 7.3.6

Figure 7.3.7 Nodes 2 & 3 facing East to the Oriskany St. Elongated Node and Genesee St.

Spatial Dynamism

Investment

7.3.2 Nodes 2 and 3 Broadway & Oriskany St., Broadway & Lafayette St.

Spatial Dynamism

Investment

Proven retail faciliites to be occupied by restaurants to support hospital development

Improve pedestrian experience and edge through landscape and sidewalk improvement

Improve pedestrian experience and edge through landscape and sidewalk improvement

New retail faciliites, new construction, or parking

Historical Infrastructure

Figure 7.3.5

Broadway Nodes

Node 2 - Broadway & Oriskany St.

Oriskany Elongated Node

Utica Auditorium Entry Walk

Node 3 Traffic Calming - Broadway & Lafayette St.

Proposed Retail

Proposed Utica Aud. Facilities

Proposed Retail

Proposed Retail

Proposed Utica Aud. Facilities

Proposed Retail
END OF RELEASE PHASE: PRE REORGANIZATION

Figure 7.3.8

- Existing plan shown

0-3 years
Impressive Street Infrastructure

3-5 years
Create Safe Pedestrian Access

6-10 years
Further Enhance Utica Auditorium Entertainment District

Invest:
- Landscape
- New Crosswalk Paint
- Speed Bumps
- Improved Streets/Sidewalks

Partners Involved:
- Neighborhood Groups
- City Agencies
- Adjacent Property Owners
- Business Associations
- Urban Planning Commission

Figure 7.3.9

Mid-Reorganization Phase

Figure 7.3.10

Resilient, Steady - State System

Invest:
- Signage/Materials
- Extend Bike Path
- Lighting/Traffic Signals
- Landscaped Median

Partners Involved:
- City Agencies
- Local Businesses
- Neighborhood Associations
- Adjacent Property Owners
- Parks and Recreation
- Non-Profits

existing plan shown
The Model Holistic DESIGN INTERVENTION: UTICA CITYWALK

Broadway & Lafayette St. Intersection

0-3 YEARS
- Increased density with vernacular architecture, retail and residential

3-5 YEARS
- Low Cost Investment in crosswalk improvements and speed bumps
- Large scale development continues eastward on Lafayette St. (retail, office, and residential)

6-10 YEARS
- Future Investment in Physical Elements

0-3 YEARS
- Low Cost Investment in Underpass Art and Physical Elements

3-5 YEARS
- Increased density, lower scale development to occupy surface parking lots, retail

6-10 YEARS
- Street Improvements

Create:
- Broadway & Oriskany St. Intersection

0-3 YEARS
- Low Cost Investment in Street Improvements

3-5 YEARS
- Low Cost Investment in Street Improvements

6-10 YEARS
- Low Cost Investment in Street Improvements

0-3 YEARS
- Low Cost Investment in Underpass Art and Physical Elements

3-5 YEARS
- Low Cost Investment in Street Improvements

6-10 YEARS
- Low Cost Investment in Street Improvements
The Model Holistic DESIGN INTERVENTION: UTICA CITYWALK

Marysia LaRosa

POLISH COMMUNITY CLUB
matt brewing co.
globe mills
mill square lofts
mvhs (site)
five points public house
(ireland cultural center)
st. joseph, st. patrick church

Create a pocket park which acts as a gateway into Brewery District

Activate underpass with wall art, proper sidewalks, lighting, and street furniture
Landscape neighborhood/interstate buffer
Strengthen business exteriors with widened sidewalks, lighting, and street furniture.

Nodes 4 & 5 will become a proper gateway between the Mohawk Valley Hospital System and the Brewery District by extending the path of the MVHS pedestrian walkway. Allowing the pedestrians on Columbia St. and Lafayette St. to continue their walkway into the Brewery District and connect to the traffic circle on Varick St. at the 5 Points Irish Pub. varick street gateway

Node 6 extends the proposed MVHS pedestrian walk to meet Varick St. to act as a proper gateway into the historic Brewery District. To continue a pedestrian centered design approach, the pedestrian walkway leads into a shared-street plaza which will mitigate traffic speeds and allow for the free movement of people and bicyclists. The design also incorporates a community garden for the surrounding church and cultural venues while also programming a market/event space for the neighboring Five Points Irish Pub. Node 5 connects to Node 6 through a traffic circle which will act as a traffic calming element in this dense area of the Brewery District. This will act as another threshold on Varick St. that will act as a traffic calming circle.

Nodes 4 and 5 - Columbia St. & Lafayette St

Node 4 extends the proposed MVHS pedestrian walk to meet Varick St. to act as a proper gateway into the historic Brewery District. To continue a pedestrian centered design approach, the pedestrian walkway leads into a shared-street plaza which will mitigate traffic speeds and allow for the free movement of people and bicyclists. The design also incorporates a community garden for the surrounding church and cultural venues while also programming a market/event space for the neighboring Five Points Irish Pub. Node 5 connects to Node 6 through a traffic circle which will act as a traffic calming element in this dense area of the Brewery District. This will act as another threshold on Varick St. that will act as a traffic calming circle.

Spatial Dynamism
Investment
historical infrastructure

Figure 7.3.1 2 Nodes 4 & 5 facing South on Varick St.

Figure 7.3.1 1

Varick Street Gateway

Node 1
Node 2 - Shared Street Plaza
Community Garden
MVHS Pedestrian Walk
Fort Notts Marketplace
Node 5 - Roundabout
Five Points
City Storage

Figure 7.3.3 Node 6 & 6.5 looking South on Varick St.
The Model Holistic DESIGN INTERVENTION: UTICA CITYWALK

Marysia LaRosa

Columbia St.
Lafayette St.
Varick St.

Invest:

Art at Underpasses
Improve Street Quality
Low Cost Physical Elements
Activate Zombie Properties
*Create New Boilermaker Road
Race Route through this area*

Invest:

Shared Street
Physical Elements (Furniture, Signage, Materials)
Bike Paths
Community Garden
Marketplace
Traffic Circle

Invest:

Site Considerations (Multi-functionality, Safety)
Events
Historic Building Preservation
Activated Alleyways
Pocket Parks
Pond/Ice Rink

Partners Involved:

Neighborhood Groups
City Agencies
Adjacent Property Owners
Business Associations

Partners Involved:

Neighborhood Associations
City Agencies
Local Businesses
Non-profits

Partners Involved:

Park and Recreational Facilities
Local Businesses
City Agencies
Neighborhood Associations
The Model Holistic DESIGN INTERVENTION: UTICA CITYWALK

Lafayette St. Pedestrian Path

- Lafayette St. Pedestrian Path (Extend Node 1 Bike Path and MVHS Pedestrian Path, Corner Park)
 - Low Cost Investment in Underpass Art and Physical Elements
 - Future Investment in Physical Elements
 - 6-10 Years

Columbia St. & Varick St. Node

- Columbia St. & Varick St. Node (Investment in Traffic Calming Roundabout at Brewery Gateway)
 - Future Investment in Physical Elements, Wayfinding, Signage, Mid-Scale Retail, Office and Residential Development
 - 0-3 Years

- Create:
 - 3-5 Years
 - 6-10 Years
Node 6 completes the identity of Varick St. by anchoring the design efforts implemented at Nodes 4 & 5. Node 6 attempts to support the design goals proposed at Clinton St. and the identity of the Brewery District. This Node is a major tourist attraction for residents and visitors of Utica due to Matt Brewing Co. events and the Boilermaker Road-Race that occurs every July. Through the design, it is important to keep these events in mind and make them apart of the overall design goals. The intervention will include qualities of investment and historical infrastructure to pay respect to the historic brewery and mill buildings while incorporating low cost investments to enhance the Varick St. & Court St. connection.

The goals for Node 6 are to eventually transform the intersection between Varick St. & Court St. into a dynamic transformable street for Matt Brewing Co. events and the Boilermaker Road-Race. The design engages the existing brewery concert venue and continues the same language to Varick St. through market/event booths. This strategy can be used not only for the two events mentioned but any event the city decides to host. The design also adds new social spaces and pocket parks occupying zombie properties that once existed along Varick St. The new design supports the efforts completed at Nodes 4 & 5, completing the core identity of the Brewery District.
The Model Holistic DESIGN INTERVENTION: UTICA CITYWALK

Marysia LaRosa

0-3 years

- **Invest:**
 - Improve Street Quality
 - Painted Sidewalks
 - Pocket Parks
 - Low-Cost Street Furniture
 - Landscape

- Create New Boilermaker Road
- Race Route through this area

Improve Street Quality
- Paved sidewalks
- Landscaped medians
- Art installations

Resilient, steady - state system

- **IMPROVE STREET QUALITY**
- **PAINTED SIDEWALKS**
- **POCKET PARKS**
- **LOW-COST STREET FURNITURE**
- **LANDSCAPE**

PARTNERS INVOLVED:
- Neighborhood Groups
- City Agencies
- Adjacent Property Owners
- Business Associations
- Non-Profits

Figure 7.3.18 Existing plan shown

Figure 7.3.19

Partners Involved:
- Neighborhood Groups
- City Agencies
- Adjacent Property Owners
- Business Associations
- Non-Profits

Figure 7.3.20

Partners Involved:
- Parks and Recreation
- City Agencies
- Local Businesses
- Neighborhood Associations
- Adjacent Property Owners
- Non-Profits
- Matt Brewing Co.

0-3 YEARS

- Create Vibrant streets with subtle improvements

3-5 YEARS

- Prioritize events

6-10 YEARS

- Complete Varick St. with increased density

Figure 7.3.21

- Resilient, steady - state system
- Mid-reorganization phase
- End of release phase: pre reorganization

- **IMPROVE MATERIALS**
- Temporary Street Transformation
- Markets/Local Business Events
- Event

- **CREATE VIBRANT STREETS WITH SUBTLE IMPROVEMENTS**
- **PRIORITIZE EVENTS**
- **COMPLETE VARICK ST. WITH INCREASED DENSITY**
The Model Holistic Design Intervention: Utica Citywalk

Boilermaker Road Race Finish Line
- Low Cost Investment in Sidewalk Art and Landscape
- Safe Social Zones, Crosswalk, Restored Globe Mills, increased density

Matt Brewing Co. Pocket Park
- Remove Fence; Implement Pocket Park and Low Cost Seating
- Pavement, Physical Elements, More Landscape
- Add Colorful Mosaics, Improved Physical Elements, and Signage

0-3 years
- Street Furniture, Sidewalk, Bike Lanes, Restored Globe Mills, Increased Density

3-5 years
- Temporary Street Transformation for Markets and Brewery Events, Increased Retail on Varick St.

6-10 years
- 0-3 years
- 3-5 years
- 6-10 years

Create:
CH.8 RESPONSE TO DESIGN

8.1 Reflection

Marysia LaRosa
8.1 REFLECTION

Throughout this thesis and the extensive amount of research I did on ecological systems such as the adaptive cycle and the Rust-Belt, I asked myself many questions. To begin, why is such a culturally and creatively diverse region such as the Rust-Belt still recovering from the effects of de-industrialization? Why hasn’t city agencies researched and implemented methods of urban resiliency into their master planning? Most importantly, how can the adaptive cycle be a holistic way for Rust-Belt cities to implement urban design strategies to increase city resiliency?

When choosing Utica for the site for exploration, it was an easy decision to make. Utica is a very special city due to its rich culture, community, history, and unique geography. Utica city has my mother and her family emigrated to when they left Poland in the 1960’s. Utica is also the city my mother and her family emigrated to when they left Poland in the 1960’s. She grew up on Court St. a block from Node 6 and not that much further from Genesee St. She always discusses with me how vibrant downtown used to be and the memories she has for the years of Utica Brewing Co. and not too long ago for Utica Citywalk. This created interest to explore how I could take what I’ve learned about urban resiliency and apply it to a city that has lost its urban identity and is hoping to rebuild.

My research of the adaptive cycle and Utica downtown urban fabric led me to the conclusion that by targeting specific nodes with positive design qualities, districts will reconnect to one another, thus, placing Utica on a positive trajectory of urban resiliency. Further, I concluded this process must be evolutionary. Initially, the design strategies must be low cost investments to generate new city agencies and the community to invest. Overtime, the city, residents, and business owners will see the potential for growth in these districts and begin to densify the urban core even further. The goal is to invest small at first for the greatest potential return for the years to come.

Each node was specifically chosen to begin the urban evolutionary process. The three districts of Bagg’s Square West, MVHS, and The Brewery District, are districts of historical infrastructure, new development, and tourism. These districts receive some of the most visitation from residents and visitors of Utica. The nodes target gateway points between each district to create a unified path. The Utica Citywalk The Utica Citywalk provides residents a safe and experiential way to see downtown or reach urban destinations. The intervention re-establishes the district of downtown to allow the city to reconnect itself back.

The takeaway from this thesis is that any city can employ the resilience approach to master planning goals. When positive design strategies are inputted into one district, the effects will naturally influence the other parts of the city. By setting tangible goals and gradually increasing in targeted nodes, the urban fabrics will begin to reorganize itself on a pathway of positive resiliency. Further, this thesis begins the conversation that the adaptive cycle can work for all cities (not only Rust-Belt cities, but all cities), that preventing negative urban conditions has a positive long-term effect on all urban infrastructures, enhances all urban behaviors, and generates new ideas.
A. REFERENCES

A.1 Models
A.2 Bibliography
A.3 Figure Index
A.4 Image Index
A.1 MODELS

District Model showing major avenues, intersections, and connectivity.

Current District Master Plan Collage. The study explored the topography and experimented with the scope of the Utica Citywalk and possible node locations.

Abstract design exploration model. The model shows the three districts of Bagg’s Square West, MVHS, and The Brewery District. It acknowledges the phase of each district and potential design opportunities.
Marysia Landza
Figure 2.3.3 Conceptual Schematic Model of the Urban system proposed by Meerow et al. (2016) and inspired by Dicken (2011). Figure 2.3.1 The four phases of the adaptive cycle from resilience theory. Figure 2.1.1 Theoretical Ball-and-Cup Diagram used to depict ecological resilience. Copyright © 2002 Island Press. Reproduced by permission of Island Press. Adapted from Panarchy, edited by Lance H. Gunderson & C.S. Holling. Copyright © 2002 Island Press. Reproduced by permission of Island Press. Marysia LaRosa.
MARYSIA LAROSA
KENNESAW STATE UNIVERSITY
COLLEGE OF ARCHITECTURE AND CONSTRUCTION MANAGEMENT
MARIETTA, GA
COMPLETION - SPRING 2020
BACHELOR OF ARCHITECTURE