
Kennesaw State University Kennesaw State University

DigitalCommons@Kennesaw State University DigitalCommons@Kennesaw State University

Master of Science in Computer Science Theses Department of Computer Science

Summer 7-14-2020

Deep Learning for Identifying Breast Cancer Deep Learning for Identifying Breast Cancer

Yihong Li

Follow this and additional works at: https://digitalcommons.kennesaw.edu/cs_etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Li, Yihong, "Deep Learning for Identifying Breast Cancer" (2020). Master of Science in Computer Science
Theses. 34.
https://digitalcommons.kennesaw.edu/cs_etd/34

This Thesis is brought to you for free and open access by the Department of Computer Science at
DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Master of Science in Computer
Science Theses by an authorized administrator of DigitalCommons@Kennesaw State University. For more
information, please contact digitalcommons@kennesaw.edu.

https://digitalcommons.kennesaw.edu/
https://digitalcommons.kennesaw.edu/cs_etd
https://digitalcommons.kennesaw.edu/cs
https://digitalcommons.kennesaw.edu/cs_etd?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/cs_etd/34?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

DEEP LEARNING FOR IDENTIFYING BREAST CANCER

A Thesis
Presented to

The Faculty of the
Computing and Software
Engineering Department

By

Yihong Li

In Partial Fulfillment
of Requirements for the Degree

Master of Computer Science in the
Kennesaw State University

Department of Computing and Software Engineering

Kennesaw State University

July 2020

c© Yihong Li 2020

DEEP LEARNING FOR IDENTIFYING BREAST CANCER

Thesis committee:

Dr. Mohammed Aledhari
Computing and Software Engineering
Kennesaw State University

Dr. Chih-Cheng Hung
Computing and Software Engineering
Kennesaw State University

Dr. Hisham Haddad
Computing and Software Engineering
Kennesaw State University

Date approved: July 14, 2020

ACKNOWLEDGMENTS

I would like to thank the members of the thesis committee for their help and sugges-

tions in preparing for this work. Without them, I am doomed to be unable to complete it.

Dr. Mohammed Aledhari helped me clarify many ideas, provide many new ideas and sug-

gestions about the my project. It also gave me clear directions and guidance. In addition,

it will meet with me every week to discuss the progress and content of the paper, and give

great help in the process of the paper. Dr. Chih-Cheng Hung and Dr. Hisham Haddad also

made very meaningful suggestions on the title and content of my thesis. I am very happy

to invite these three doctors as members of my thesis committee.

Special thanks to friends and colleagues who made this work possible. Ms. Lin Wang

is my friend, we have the same advisor. So, we often exchange ideas together on projects

or preparations. This is very helpful for the completion of my thesis.

Here, I would like to express my heartfelt thanks to all the people who helped in the

process from the submission to the completion of the paper.

iii

TABLE OF CONTENTS

Acknowledgments . iii

List of Tables . vii

List of Figures . ix

List of Acronyms . xii

Chapter 1: Introduction and Background . 1

1.1 Introduction . 1

1.2 Significance of the Proposed Project . 3

1.3 Research Question . 4

1.4 Purpose of Study . 5

1.5 Audience . 5

1.6 Motivation . 6

1.7 Evaluation Plan . 6

1.8 Paper Goals . 8

Chapter 2: Literature Review . 9

2.1 Convolutional Neural Network (CNN) Based Methods Compare 9

2.2 Computer-Aided Diagnosis (CAD) . 11

iv

2.3 Breast Cancer Detect Method . 14

Chapter 3: Method . 17

3.1 ResNet-50 . 17

3.2 Gentic Algorithm . 19

3.2.1 NNI (Neural Network Intelligence) Framework 21

3.3 Datasets . 22

3.3.1 BreakHis Dataset . 23

Chapter 4: Experiment and Analysis . 27

4.1 Data Pre-processing . 27

4.2 Experimental Environment . 28

4.3 Original ResNet-50 . 29

4.4 Proposed Method . 32

4.4.1 Loss Function . 34

4.4.2 Activation Function . 35

4.5 Results . 37

4.5.1 Breast Cancer - 40X Result . 37

4.5.2 Breast Cancer - 100X Result . 42

4.5.3 Breast Cancer - 200X Result . 50

4.5.4 Breast Cancer - 400X Result . 57

4.6 Evaluation Metrics . 65

4.7 Discussion . 70

v

Chapter 5: Conclusion . 73

Appendices . 75

Appendix A: Main Source Code . 76

Appendix B: Original ResNet Source Code . 84

Appendix C: Proposed Method Source Code 93

Appendix D: Search Source Code . 102

Appendix E: Evlation Code . 111

References . 119

vi

LIST OF TABLES

1.1 Different types of breast tumors . 4

2.1 CNN model compare . 12

3.1 Total of images in BreakHis dataset . 23

4.1 Parameters in ImageDataGenerator . 28

4.2 Dataset information . 29

4.3 Experimental Environment. 29

4.4 Original ResNet experimental parameters. 32

4.5 Proposed method experimental parameters. 33

4.6 Proposed method parameters in ImageDataGenerator 34

4.7 Hyperparameters compare between original ResNet and proposed method
for 40X training dataset . 40

4.8 Hyperparameters compare between original ResNet and proposed method
for 40X validation dataset . 40

4.9 Hyperparameters compare between original ResNet and proposed method
for 40X testing dataset . 42

4.10 Hyperparameters compare between original ResNet and proposed method
for 100X training dataset . 48

4.11 Hyperparameters compare between original ResNet and proposed method
for 100X validation dataset . 48

vii

4.12 Hyperparameters compare between original ResNet and proposed method
for 100X testing dataset . 50

4.13 Hyperparameters compare between original ResNet and proposed method
for 200X training dataset . 55

4.14 Hyperparameters compare between original ResNet and proposed method
for 200X validation dataset . 56

4.15 Hyperparameters compare between original ResNet and proposed method
for 200X testing dataset . 56

4.16 Hyperparameters compare between original ResNet and proposed method
for 400X training dataset . 62

4.17 Hyperparameters compare between original ResNet and proposed method
for 400X validation dataset . 63

4.18 Hyperparameters compare between original ResNet and proposed method
for 400X testing dataset . 65

viii

LIST OF FIGURES

1.1 Cancer case count . 2

2.1 Machine Learning and medical imaging publications in PubMed 10

3.1 Residual block . 18

3.2 Evolutionary algorithm process . 20

3.3 40X BreakHis dataset examples . 24

3.4 100X BreakHis dataset examples . 25

3.5 200X BreakHis dataset examples . 25

3.6 400X BreakHis dataset examples . 26

4.1 50 layer ResNet architecture . 31

4.2 40X validation loss compare . 38

4.3 40X validation accuracy compare . 38

4.4 40X training loss compare . 39

4.5 40X training accuracy compare . 39

4.6 Hyperparameters compare between original ResNet and proposed method
for 40X dataset . 41

4.7 Hyperparameters compare between eight breast tumors from 40X training
dataset . 43

ix

4.8 Hyperparameters compare between eight breast tumors from 40X valida-
tion dataset . 44

4.9 Hyperparameters compare between eight breast tumors from 40X testing
dataset . 45

4.10 100X validation loss compare . 46

4.11 100X validation accuracy compare . 46

4.12 100X training loss compare . 47

4.13 100X training accuracy compare . 47

4.14 Hyperparameters compare between original ResNet and proposed method
for 100X dataset . 49

4.15 Hyperparameters compare between eight breast tumors from 100X training
dataset . 51

4.16 Hyperparameters compare between eight breast tumors from 100X valida-
tion dataset . 52

4.17 Hyperparameters compare between eight breast tumors from 100X testing
dataset . 53

4.18 200X validation loss compare . 54

4.19 200X validation accuracy compare . 54

4.20 200X training compare . 55

4.21 200X training compare . 55

4.22 Hyperparameters compare between original ResNet and proposed method
for 200X dataset . 58

4.23 Hyperparameters compare between eight breast tumors from 200X valida-
tion dataset . 59

4.24 Hyperparameters compare between eight breast tumors from 200X training
dataset . 60

4.25 Hyperparameters compare between eight breast tumors from 200X testing
dataset . 61

x

4.26 400X validation loss compare . 62

4.27 400X validation compare . 62

4.28 400X training loss compare . 63

4.29 400X training accuracy compare . 63

4.30 Hyperparameters compare between original ResNet and proposed method
for 400X dataset . 64

4.31 Hyperparameters compare between eight breast tumors from 400X valida-
tion dataset . 66

4.32 Hyperparameters compare between eight breast tumors from 400X training
dataset . 67

4.33 Hyperparameters compare between eight breast tumors from 400X testing
dataset . 68

4.34 Fibroadenoma . 69

4.35 Phyllodes tumor . 70

4.36 Lobular carcinoma . 70

xi

xii

SUMMARY

Medical images are playing an increasingly important role in the prevention and diag-

nosis of diseases. Medical images often contain massive amounts of data. Professional

interpretation usually requires a long time of professional study and experience accumula-

tion by doctors. Therefore, the use of super storage and computing power in deep learning

as a basis can effectively process a large amount of medical data. Breast cancer brings great

harm to female patients, and early diagnosis is the most effective prevention and treatment

method, so this project will create a new optimized breast cancer auxiliary diagnosis model

based on ResNet. Analyze and process, realize medical aided diagnosis, and provide sci-

entific diagnosis for breast cancer patients.

xiii

CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

People’s health is always a very important topic. Cancer is one of the most malignant dis-

eases with the highest morbidity and mortality in the world, which seriously threatens peo-

ple’s health and life [1]. Today, the incidence of cancer continues to rise, and researchers

around the world are making every effort to create and find more effective and advanced

ways to fight and prevent cancer. Therefore, researchers around the world are participating

in the fight against cancer. Cancer has become more and more clear and complicated in

the public’s vision, forming an inevitable huge medical component. Although, researchers

and medical staff are doing their best to develop innovative drugs and medical methods to

prevent, classify and treat cancer. However, it is still far from the goal [2]. In order to

suppress the development of cancer to people; accelerate the prevention and treatment of

cancer, all aspects of society make their contribution. For example, the 21st Century Cure

Law provided 4.8 billion and the Precision Medicine Initiative [3] for Cancer Monthly Bul-

letin [4]. This method not only provides great help and encouragement to researchers, but

also greatly encourages patients.

Among them, with the continuous maturity of computer technology, medical image

recognition technology in computer technology has also been further developed, and has

been widely used in benign or malignant tumors, brain function and mental disorders, car-

diovascular and cerebrovascular diseases and other major diseases The clinical auxiliary

screening, diagnosis, classification and treatment plan have made significant contributions

[5]. Traditional machine learning mainly relies on manual feature extraction of image data,

and uses the extracted features for model training. The process is time-consuming, labori-

1

ous, and unstable. But the deep learning assisted diagnosis technology can automatically

extract features and greatly improve the stability, so this project is based on CNN to identify

the benign and malignant breast tumors.

Figure 1.1: Top 10 Cancers by Rates of Cancer Deaths.

Breast cancer is the most common cause of cancer death among women. And can

be ranked second [6], as shown in Figure 1.1. According to statistics from the American

Cancer Society, approximately 25% of cancer patients are breast cancer patients. And in the

past five years, the incidence of breast cancer has increased by a certain percentage every

year [7]. There are many reasons for breast cancer, for example, oral contraceptives, short

breastfeeding time, heavy drinking, family medical history. Lots of bad habits will increase

the risk of breast cancer[8] [9]. But for most women, the current medical technology

cannot be sure about the cause of breast cancer [10], and early breast cancer does not have

the typical symptoms and characteristics, often be overlooked. However, this disease is

usually fatal to women and therefore requires very effective rapid diagnosis and effective

treatment. This has huge social benefits for the entire society and women around the world.

At present, deep learning is a very effective detection and diagnosis method.

At present, we propose use BreakHis breast cancer dataset to train and test ResNet

model, and will do a comprehensive comparison. Then, optimize the original ResNet model

2

and create a new model with better performance. For the proposed method, we chose to

combine genetic algorithms. Compared with traditional algorithms, genetic algorithm can

search multiple peaks in parallel, and has good operability and global optimization features.

In addition, it only uses the objective function and the corresponding adaptive function, and

does not need other auxiliary information. So, it can effectively solve the shortcomings of

traditional algorithms. Applying this proposed method to clinical aspects can not only help

experienced doctors to quickly screen for triage diseases, diagnose more patients in a lim-

ited time, but also help doctors who cannot yet accurately judge breast cancer to conduct

breast cancer screening, saving The cost is conducive to a large-scale promotion and popu-

larization in the society. Therefore, the research in this article is of great significance to the

improvement of medical service capabilities and social development.

1.2 Significance of the Proposed Project

The beneficiaries of the project to identify malignant cancer are not only patients, but also

have a very large contribution to medical aspect. For patients, if malignant tumors can

be detected at an early stage of disease, the chance of treatment will be high. However,

at present, due to the limitations of the collected medical equipment, manual diagnosis

and reading medical films, there will still be cases of misdiagnosis, missed diagnosis and

untimely diagnosis. Through this technology, patients can obtain more efficient diagnosis

results and judgment efficiency, thereby avoiding the use of too much time in the hospital

to wait in line and wait for the time for consultation; for the medical institutions, they

have accumulated a lot of data but do not know how effective clinical use; for medical

device manufacturers, they also want to use artificial intelligence to improve the product

technology level to expand their market; for doctors, they hope to reduce the cost of reading

time and reduce the probability of misdiagnosis.

Through training and experimenting with massive medical data, learning and research

of medical images, computers can generate accurate prediction models, and provide early

3

warning and outcome evaluation for malignant diseases. This greatly solves the above-

mentioned contradictions and problems and makes a huge contribution to cancer prevention

and detection in the future.

Table 1.1: Different types of breast tumors.

Breast Tumors Diseases Name

Benign Tumors

Adenoma (A)
Fibroadenoma (F)

Phyllodes Tumor (PT)
Renal Tubular Adenocarcinoma (TA)

Malignant
Tumors

Cancer (DC)
Lobular Carcinoma (LC)

Mucinous Carcinoma (MC)
Papillary Carcinoma (PC)

1.3 Research Question

We proposed a method for breast cancer recognition based on ResNet model. And use

BreakHis dataset. The BreakHis database contains microscopic biopsy images of benign

and malignant breast tumors. They are collected through clinical research, and are images

that have been distinguished by physicians, and are authoritative. There are also different

types of breast tumors. First, breast tumors are divided into benign and malignant in Ta-

ble 1.1. The types of benign tumors are adenosis (A), fibroadenoma (F), phyllodes tumor

(PT), and tubular adenona (TA); and four malignant tumors (breast cancer): carcinoma

(DC), lobular carcinoma (LC), mucinous carcinoma (MC) and papillary carcinoma (PC).

Therefore, the purpose of this project is to distinguish and identify the characteristics of

malignant tumors through medical data sets, help doctors quickly diagnose cancer, and

reduce the chance of misdiagnosis and missed diagnosis. In our experiment, we made a

comprehensive comparison between the original ResNet and the proposed method model,

including activation function, learning rate, epoch, loss function, optimization function,

4

confusion matrix, accuracy, loss, F1 score, accuracy, Recall, specificity, and sensitivity.

Finally, to achieve our experimental purpose.

The second part is that the BreakHis dataset includes images of breast tumors with dif-

ferent magnifications, including 40X, 100X, 200X, and 400X. We also will use the original

ResNet and proposed method for comparison and analysis. Therefore, the impact of the

magnification under the microscope on the diagnosis of the disease is analyzed, and the

criteria for judging breast tumor diseases are also analyzed.

1.4 Purpose of Study

Medical image analysis and external performance have always been the focus of doctors.

At present, an automated structure can effectively help doctors to improve the accuracy of

recognition and judgment. It is very difficult for people to judge the type of breast cancer

only by vision, so it is very important to use machines to perform accurate image processing

and feature extraction and finally reach the level of a doctor. Each type of different breast

cancer has its own unique characteristics, and the machine can learn them and accurately

classify them is the ultimate goal of our project. Avoid the deterioration of people’s breast

cancer and lead to irreparable consequences, and help patients and doctors have a deeper

understanding and understanding of breast cancers.

1.5 Audience

This research involves multiple fields, not only for individuals but also has a huge impact on

medicine, so it has a wide and diverse target audience. Since it involves medicine, it is also

aimed at experts of the Biomedical Imaging Society. For example, for individual patients,

their early detection of diseased breast cancer will increase the chance of treatment. And

can obtain more effective diagnosis results and judgment efficiency, thereby avoiding the

disease from developing into cancer and waiting for consultation time to spend too much

time; for medical device manufacturers, using artificial intelligence to improve the technical

5

level of products and expand the market; in addition, The doctor’s aspect will reduce the

time to read cases and X-rays, and reduce the possibility of misdiagnosis.

Through training and experiments on a large number of medical data, learning and

research on medical images and medical records, the machine can generate accurate pre-

diction models, and provide early warning and result evaluation of malignant diseases. This

greatly solves the above contradictions and problems, and makes great contributions to the

prevention and detection of breast malignant tumor in the future.

1.6 Motivation

Physical and mental health is necessary for normal study, work and life. Without a healthy

body, you will not be able to maintain sufficient energy for a long time, and you may even

suffer from certain diseases and cannot perform normal social activities. Malignant tumors

of the breast are an incurable disease that has had a great impact on many people’s bodies,

leading to negative emotions in many patients. In addition to the psychological impact on

the patient, it also has an impact on life, which cannot be successful in study, work and life.

Therefore, health is very important [11]. This project can not only reduce the time to judge

the health status, but also greatly improve the convenience of busy people who do not have

time to go to the hospital for detailed examination, so that patients can get timely treatment

as soon as possible. At the stage of the disease, not make the condition worse and cause

more harm. People can get feedback in a short time and get more detailed treatment in the

hospital to prevent missing the best time for diagnosis and treatment.

1.7 Evaluation Plan

The main purpose of this project is to compare original and proposed method architecture

and identify the accuracy of breast cancer, we will use the following hyperparameters to

evaluate the architecture, to show the architecture more clearly, we will use accuracy Equa-

tion 1.1, precision Equation 1.2, recall Equation 1.3, activation function, learning rate,

6

epoch, loss function, optimization function, confusion matrix, loss, F1 score, specificity

Equation 1.5, sensitivity Equation 1.4 to analyze the original and proposed method archi-

tecture.

Accuracy =
TP + TN

TP + TN + FP + FN
(1.1)

Precision =
TP

TP + FP
(1.2)

Recall =
TP

TP + FN
(1.3)

Sensitivity =
True Positive

Positive
(1.4)

Specificity =
True Negative

Negative
(1.5)

Among them, True positive (TP) is actually a positive sample and you are predicting a

positive sample; False negative (FN) is actually a positive sample and you are predicting

a negative sample; False positive (FP) is actually a negative sample and you are predict-

ing a positive sample; and True negative (TN) is actually a negative sample and you are

predicting a negative sample.

In our experiment, the accuracy and recall affect each other. In an ideal state, we

hope to get a high accuracy and recall, but the actual situation is that these two cannot

achieve the best at the same time, they will restrict each other. If you want a high accuracy

in the experiment, the recall is low; on the contrary, the pursuit of a high recall usually

affects the accuracy. Therefore, considering the actual situation, we are dealing with the

medical disease detection, so we must consider increasing the recall rate if we want to

ensure accuracy.

7

1.8 Paper Goals

The goal of the neural network is to build a model that can predict human health problems

based on the input of picture features. On the basis of other aspects, we hope to find a better

way to form a new architecture and have good performance in breast tumors. Finally, the

architecture was optimized so that higher and better accuracy can be achieved, thereby

creating a new architecture. At present, we are using the BreakHis breast disease data set,

and the final accuracy of this data set is 98.48%. The association between the data set and

the sentiment scale leads us to believe that better accuracy can be achieved through more

tests.

8

CHAPTER 2

LITERATURE REVIEW

With the development of the computer industry, research combining the medical field and

computer technology has a long history. The great success of deep learning in the field of

computer vision has inspired scholars around the world to apply it in the field of medical

analysis. Professor Wells of the Harvard Medical University pointed out in [12] that the

application of deep learning to solve medical image analysis tasks is a development trend

in this field. Deep learning technology is closely connected with medical image recog-

nition and disease recognition. In order to research and find more advanced recognition

assistance methods and innovative frameworks, researchers have conducted a lot of work

and experiments. Since 2016, a number of medical experts have summarized, commented,

and discussed the research status and problems of deep learning in medical image analysis

[13] [14] [15] [16] [17]. In the medical field, the application of deep learning algorithms in

the normal work of physicians has made rapid progress in medical academic and commer-

cial aspects. Various publications, academic articles, magazines and journals have shown a

rapid upward trend year by year. By 2019 alone, more than 10,000 academic articles will

be published on PubMed (see Figure 2.1). In addition, the review published by Medical

Image Analysis provides a more comprehensive summary and summary of the research on

deep learning in medical image classification, detection and segmentation, registration and

retrieval [18].

2.1 Convolutional Neural Network (CNN) Based Methods Compare

CNN is one of the most popular deep learning algorithms. Deep learning is a type of ma-

chine learning. The model of this algorithm directly learns and performs classification tasks

from images, videos, texts or sounds. It provides an end-to-end deep learning model. The

9

Figure 2.1: Machine learning and medical imaging publications in PubMed by year through 2019
showing the exponential growth of interest in the field, as reported by the US National Library of
Medicine of the National Institutes of Health [19].

parameters in the model can be trained by traditional gradient descent methods. The trained

CNN can extract the features in the image and complete the extraction and classification

of the image features. And there is no need to preprocess the image and train the image

features. Because it is particularly suitable for classifying images using features to identify

objects, faces and scenes, and does not require manual extraction.

CNN is a special deep feedforward network, which usually includes input layer, con-

volutional layer, pooling layer, fully connected layer and output layer. However, in the

network structure, in order to make the output more accurate and feature extraction more

abundant, usually the network model uses a network model that combines multiple convo-

lutional layers and multiple pooling layers [20].

As early as the early 21st century, AlexNet proposed by Krizhevsky [21] won the first

place in the ImageNet image classification competition. After AlexNet, new convolutional

neural network models have emerged, such as the VGG model of Oxford University. At

present, its network depth has been increased to 19 layers. The model is characterized

by widening and deepening the network structure. In 2014, Google also introduced the

GoogLeNet [22] model, which initially consisted of three layers of ordinary convolutions,

followed by three sets of subnetworks, three of which had 2, 5, and 2 initial modules. Fi-

nally, there are the average pool layer and the complete connection layer. Later, Microsoft’s

10

ResNet model training fusion was faster, and successfully trained hundreds or nearly thou-

sand layers of CNNs. As the depth of the convolutional neural network deepens, more

attention needs to be paid to maintaining the shortening and accuracy of the training net-

work time, so that it can better adapt to the data set required by the actual application and

improve the classification effect. From the research point of view, the future of convolu-

tional neural networks is full of infinite possibilities.

Convolutional neural networks (CNN) are based on LeNet [23], AlexNet [21], ZFNet

[24], VGG [25], Inception [22] [26], ResNet [27], Inception-ResNet [28], Xception [29],

DenseNet [20] and NASNet [30]. The following table comprehensively compares the more

classic CNN model Table 2.1.

2.2 Computer-Aided Diagnosis (CAD)

Deep learning technology can solve many medical problems to a certain extent. Although

the results also have many problems, such as poor data quality, patient privacy, and im-

proper supervision, the development of deep learning in the medical field has become un-

stoppable. Through the long-term exploration and development of many researchers and

companies, with the help of human medical experts, tumors, cardio-cerebrovascular, neu-

rology, facial features and other research fields have made good progress, and scientific

research results continue to emerge. In order to reduce the misdiagnosis and misdiagnosis

in the diagnosis process, and at the same time improve the specificity of detecting cancer,

relevant experts have proposed the method of second reading [31]. The specific method is

that two doctors diagnose the same breast X-ray picture separately, and combine the diag-

nosis results of the two doctors to give the final result, but the disadvantage of this method

is that it will consume higher costs. With the reform and prosperity of information tech-

nology, the integration of computers into medical treatment has appeared in people’s lives,

that is, computer-aided diagnosis technology.

11

Table 2.1: Comparative analysis of improved CNN model

Model Technology Structural Features

LeNet-5
Relu;

Softmax regression

Structure is simple;
Model depth is shallow;

Image feature is bad;
Overfitting

AlexNet

Relu;
Dropout technology;
Data enhancement;

Multi-GPU parallel training

Avoid overfitting;
Convergence speed stable;

Speed is faster;
Calculation increases;

More parameters

ZF-Net

Relu;
Dropout technology;
Data enhancement;

Multi-GPU parallel training;
Smaller filter;

Softmax regression

Adjusted parameters;
Stronger than AlexNet

VGGNet

Relu;
Dropout technology;
Data enhancement;

Multi-GPU parallel training;
Softmax regression;

1*1, 3*3 small convolution kernels

More judgmental;
Fewer parameters;

Large amount of calculation

GoogLeNet

Relu;
Dropout technology;
Data enhancement;

Multi-GPU parallel training;
Inception structure;
Softmax regression

Reduce calculations;
Fewer parameters;

Replace all fully connected layers
with simple global average pooling;

ResNet

Relu;
Multi-GPU parallel training;

Residual blocks;
Average pooling;

Softmax regression

Directly pass the input information
to the output to protect the

integrity of the information;
Entire network only needs to

learn the input and output,
simplifying the learning goals

12

Computer-aided diagnosis (CAD) [31] [32] [33] technology refers to the combination

of medical imaging technology, image processing technology and computer technology to

help doctors diagnose the diseased area, reduce the probability of misdiagnosis and missed

diagnosis, and improve the sensitivity and accuracy of the diagnosis of the diseased area.

In the CAD system, the function of the computer is mainly to acquire, process, display and

understand the input medical data. Adding a CAD system to the clinical diagnosis of breast

cancer can not only maintain false positives, but also improve the accuracy [33].

Giger et al. [34] combined breast cancer and CAD systems to increase the specificity

of the diagnosis by 10%, while at the same time, the sensitivity also increased by 14%.

Kumar et al. [35] [36] proposed a CAD system for detecting liver cancer in 2013.

Among them, the CAD system is an effective computer-aided tool. Its functions include

preprocessing input medical data, fully automatic separation of diseased parts, then feature

extraction, and finally a final judgment based on the processing results, whether it is benign

or malignant. Finally, a very high accuracy is obtained, reaching 96.7%.

Vincey Jeba Malar et al. [37] proposed a CAD system for liver cancer detection in 2013.

The main optimization part is feature extraction. In order to avoid the shortcomings of

traditional algorithms, it is proposed to use the Hidden Markov Model (HMM) to complete

the experimental project, and a test rate of 96.5% is obtained.

Priyanjana et al. [38] proposed in 2013 to classify four CAD systems related to liver

diseases based on CT images. In the experiment, five different feature texture analysis

methods were used: first-order statistics (FOS), legal texture energy measurement (TEM),

spatial gray-scale dependent matrix (SGLDM), fractal dimension measurement (FDM) and

gray scale Difference matrix. For comparison and experimental purposes.

Pereira et al.[39] used the convolutional neural network architecture in the field of dis-

ease exploration and segmentation, tried a small kernel, deep network architecture, and

used data processing methods such as grayscale normalization and data enhancement to

The enhanced part and core part of the imaged brain tumor were segmented, and won the

13

first place in the 2013 public challenge.

2.3 Breast Cancer Detect Method

With the development of computer technology, computers can also perceive things that

humans can perceive, such as the identification of people, the identification of pictures, the

judgment of diseases, etc. According to the development of artificial intelligence, artificial

neural networks are the most important findings. However, with the development of science

and technology, artificial neural networks will not stop at the most basic technology but will

propose a deeper learning structure on this basis [40]. From the development of many years,

the use of deep CNN to detect cancer diseases is very popular among the public, and there

are many examples. Biomedical image analysis has always been an important research area

in deep learning. In this way, diseases can be detected early and preventive measures can

be taken. Disease detection is usually preferred by viewing computer tomography images.

Computer-aided diagnosis (CAD) systems often rely on machine learning techniques to

detect cancer. The different methods and researches that have been published on breast

cancer recognition are:

Ismail et al. [41]. used the IRMA dataset to detect breast cancer, and evaluated the

VGG16 and ResNet50 deep learning model networks. The results showed that VGG16

performed better, reaching 94%. But no improvement was made on this architecture, only

make the comparison of these two architectures.

Bayramoglu et al. [42]. proposed a multi-task CNN architecture to use BreaKHis

dataset for image classification of breast cancer, and the recognition rate is about 83%.

This method is different from the method based on manual features, and can benefit from

the additional label training data in a direct way. But this method still needs to improve the

accuracy.

Teresa Araujo et al. [43]. proposed a method based on deep learning, using CNN

algorithm and CNN + SVM algorithm to classify breast images, achieving an accuracy of

14

83.30%. Comparing the accuracy of the two methods, CNN + SVM performs better than

the CNN. The accuracy of the results needs to be improved, and more advanced techniques

can be combined to improve the accuracy.

Jongwon et al. [44]. proposed to use BreaKHis database to detect breast cancer based

on Google Inception v3 model. The results show that the AUC of transfer learning is 0.89.

The classification accuracy of the model for benign tumor is 0.83, and the classification

accuracy for malignant tumor is 0.89. However, this work has not been optimized, just

compare.

Abirami et al. [45] Classify breast using wavelet features and obtain a high accuracy of

93%.

Uppal and Naseem [46] used a combination of discrete cosine transform and discrete

wavelet transform to classify mammograms into three categories.

Sahiner et al.[47] used convolutional neural networks in medical image processing in

1996. In this work, the researchers extracted texture features of target tissues from breast,

and then applied volume the product neural network is used for classification. The network

contains only one input layer, two hidden layers and one output layer, which realizes the

detection of tumors and normal tissues.

In [48], the CNN model is used to segment breast images for more accurate analysis.

Jamieson et al. [49] The adaptive deconvolution network (ADN) is used to simplify the

characteristics of breast cancer into two distinctions between malignant and benign.

Mert et al. [50] For the two classification methods, radial basis function neural network

(RBFNN) with independent component analysis (ICA) was proposed to analyze breast

cancer.

Mahboubeh et al. [51]. proposed to use Inception and ResNet for detection on the TMA

dataset and BreaKHis dataset. The results show that the accuracy rates are both between

90% to 93%. The ResNet framework detects cancer up to 98.7%.

Ankit et al. [52]. proposed to use AlexNet to analyze breast cancer. Using the BreakHis

15

dataset, the accuracy range is between 93.8% to 95.7%. This scheme is a simple method

that combines the transfer learning method and is only classified.

Wisconsin’s breast cancer diagnosis data set is a numerical data set obtained by the

fine needle aspiration (FNAC) method. Singh S. et al. [53] used the data in this dataset for

analysis and used a convolutional neural network model for classification, with an accuracy

rate of 96%.

16

CHAPTER 3

METHOD

3.1 ResNet-50

Breast cancer image classification and recognition research itself is a binary classification

study. The model used in this experiment is a convolutional neural network. In theory,

the more network layers, the better the extracted features. If you want to further improve

the accuracy of the model, the most direct method is to design the deepest network. The

effect of the model will get better and better. However, the actual situation does not allow

this, such as the LeNet model has only 5 layers, the AlexNet model has 8 layers, and the

VGG-16 model has 16 layers, all of which have achieved good results in the ImageNet

competition. These network models do not have hundreds of layers but still get such good

results. This is because the directly stacked network, when the network reaches a certain

depth, the model’s effect is getting worse and worse, and the model becomes difficult to

train.

In our experiment, the network model we adopted is the ResNet-50 model, because the

ResNet-50 model has excellent results in image classification. Other convolutional neural

network structures have no way to determine the optimal number of network layers, and

the ResNet-50 model can well avoid the process of finding the optimal network layer. Its

main solution is to solve the problem of gradient disappearance or gradient dispersion with

the increase of depth in the convolutional network. ResNet can simplify this problem and

bring excellent results. The training of convolutional neural networks is based on the chain

rule. As long as one of the multiplication factors is close to zero or infinite, the final result

will be close to zero or infinite. This will form a problem that the network is difficult to

train or improve, and the effect will be counterproductive.

17

Figure 3.1: Residual block of deep residual network.

It can be clearly seen from the residual block shown in Figure 3.1 that the structure of

the residual block can solve the problem of gradient disappearance or gradient dispersion

caused by the chain rule from the source. For the residual structure, there is the following

relationship as Equation 3.1:

F = W2σ (W1x) (3.1)

Where σ represents the activation function ReLU, and the output is obtained through a

residual unit structure and a second activation function as Equation 3.2:

y = F (x, {Wi}) + x (3.2)

As can be seen from the formula, this greatly solves the contradiction of the traditional

convolutional neural network, and ResNet uses batch normalization and ReLU activation

unit, which reduces the training difficulty of ResNet, so we chose this network model for

our experiment.

18

The characteristic of ResNet model:

1) Increase the network layer and improve the network segmentation accuracy.

2) More jump connections can be added in the middle of the network, which can better

combine the background semantic information of the image to perform multi-scale

segmentation.

3) ResNet has the advantages of rapid convergence and reducing the amount of model

data.

4) ResNet makes the model easier to train, which prevents the model from degenerating,

but also prevents the gradient from disappearing, and the loss does not converge.

3.2 Gentic Algorithm

Evolutionary algorithms are a large category, for example, includes genetic algorithms,

genetic programming, evolution strategies, and evolution programming methods. What

we want to use to improve our proposed method is the genetic algorithm. Evolutionary

algorithm (EAs), it is not a specific algorithm, but a general name and basis for a class of

algorithms based on Darwin’s theory of evolution. It does this by simulating the evolution

of biology in nature, reproduction, mutation, competition and selection. Correspondingly,

the algorithm will also generate operations such as genetic coding, population initialization,

cross-mutation operators, and management retention mechanisms [54]. Among the many

calculation methods, evolutionary calculation is a special calculation method with high

performance, so this is why we choose this optimization algorithm, it can be applied to a

variety of architectures and models, and has real-time evolution And excellent robustness

features. In addition, it can also self-adjust, so as to be more appropriately integrated into

the new architecture or model. And, to complete more powerful improvements, you can

also deal with ways that traditional methods cannot.

19

In the application process, it can give a coding scheme to the entire parameter space

instead of processing specific parameters, that is to say, instead of searching from a single

initial point, it automatically adjusts the algorithm control parameters and coding accuracy.

Therefore, evolutionary algorithms are widely applicable, highly nonlinear, easy to modify,

and parallelize.

Compared with ordinary search methods, evolutionary computing is an iterative algo-

rithm. The difference is that in the search process, evolutionary computing starts from a set

of solutions to a problem and improves to another set with better results. The group issued

further improvements. Imitating biological inheritance methods, mainly adopting a series

of three operations of replication, exchange and mutation to derive the next generation of

individuals. Then, according to the size of the fitness, the survival of the fittest will be

improved, and the quality of the new generation group will be improved. After repeated

iterations, the optimal solution will be obtained. From a mathematical point of view, the

evolutionary algorithm is essentially a method of searching for optimization, as shown in

Figure 3.2.

Figure 3.2: Simplify the basic operation process of the evolutionary algorithm.

Firstly, propose a complete plan; evaluate the advantages and disadvantages of the plan;

select a part of the plan as the basis for the next steps; iterate and get results; after reaching

the goal, you will get excellent results, otherwise repeat the iterative steps, looking again

20

the better plan. [55]. Evolutionary computing is a very promising method and is used

in many professional applications, such as pattern recognition, image processing, artificial

intelligence, economic management, mechanical engineering, electrical engineering, com-

munications, and biology [56]. The development of evolutionary computing is very rapid

and has been widely recognized by academia.

3.2.1 NNI (Neural Network Intelligence) Framework

In the actual operation of machine learning, a lot of manual intervention is usually required,

for example, feature extraction, model selection, parameter adjustment, etc. When we

want to create an optimized architecture, we need to make appropriate adjustments in the

above aspects and achieve more excellent results and architecture. The emergence of the

NNI framework helps researchers to no longer repeat parameter adjustments or try various

combinations of hyperparameters, but can directly help researchers automatically obtain

optimized architectures, which relate architectures to features, models, optimization, and

evaluation. The important steps are to learn automatically, without human intervention, to

obtain high-quality models to achieve the results we want.

NNI is Microsoft’s open source AutoML framework for deep neural networks [57]. It

is now an automated toolkit provided by Microsoft. By combining the NNI framework into

different neural network architectures, it can automatically use a variety of tuning algo-

rithms to distinguish the best performing neural network and hyperparameters, and support

different operating environments such as stand-alone, local multi-machine, cloud. It is very

conducive to the optimization of architecture under the condition of limited conditions. In

addition, it also provides a developer environment to facilitate users to debug NNI.

Compared with other automated machine learning tools, the advantages of the NNI

framework are [57]: 1. NNI supports most mainstream deep learning frameworks. 2. A

large number of tuning algorithms, with very good flexibility. 3. Suitable for developers at

all levels.

21

3.3 Datasets

The rapid development of medical imaging and recognition technology reflects the strong

demand for medical information acquisition. Compared to the language or text on the

case, the image can carry more information. Medical imaging can provide a wealth of

information, and its role in medical diagnosis is increasingly prominent. However, it is

difficult to judge cancer by machine:

1) Data source: Cancer images are an important branch of medical image data. They

are built in the data collection of hospitals or medical research for many years. The

acquisition channels are special, and the process is complicated. Therefore, a set that

can fully cover the types of cancer cases and is marked by professionals. Tracking

research data is a costly task.

2) Computer processing: In the data obtained, the normal samples are usually the ma-

jority, the pathological samples are few, and the number of positive and negative

samples is unbalanced, resulting in most of the time spent in training on the normal

samples, which is a waste of time and may lead to overfitting. In order to apply exist-

ing small-scale data sets more efficiently, a lot of parameter tuning work is required.

With the development of imaging technology, medical images are widely used in vari-

ous fields of medical research and diagnosis. Common medical images include computed

tomography (CT) [58], magnetic resonance imaging (MRI) [58], ultrasound images [59],

endoscopic images [60] [61] [62], and microscope images [63]. From the perspective of

imaging signals, endoscopic images and microscope images are visible light imaging, and

usually have better resolution ability in details such as color and texture; CT images, nu-

clear magnetic resonance images, and ultrasound images are non-invasively obtained inter-

nal tissue images. Belong to non-visible light reconstruction imaging.

Microscopic image refers to cutting a certain size of diseased tissue, using hematoxylin

and eosin (H&E) and other staining methods to make the sliced tissue into a pathologi-

22

cal slide, and then using microscopic imaging technology to image microscopic cells and

glands. By analyzing pathological pictures, the causes, pathogenesis, and pathogenesis of

lesions can be explored to make pathological diagnosis. The use of convolutional neural

networks to train medical images requires high data quality, and deep convolutional neural

networks extract high-latitude features, which can easily lead to redundancy and affect the

training results of the classifier. [18] So, we chose the BreakHis dataset as our experiment.

3.3.1 BreakHis Dataset

Breast Cancer Histopathology Image Classification (BreakHis) was established in cooper-

ation with P & D Lab-Pathology Anatomy and Cytopathology in Paraná, Brazil. It consists

of 7,909 microscopic images of breast tumor tissue collected from 82 patients using dif-

ferent magnifications, such as 40X, 100X, 200X, and 400X in Table 3.1. Currently, it

contains 2480 benign and 5429 malignant samples. The format of the data is 700X460

pixels, 3 channels of RGB, and 8-bit depth per channel. It is a dataset with PNG format.

The dataset BreaKHis is divided into two main categories: benign tumors and malignant

tumors. Benign means that the lesion does not meet any malignant criteria, such as obvious

cell atypia, mitosis, basement membrane destruction, metastasis, etc. Under normal cir-

cumstances, benign tumors are relatively safe. But a malignant tumor is the cancer that we

will detect. Its lesions can invade and destroy adjacent structures and spread to a distance,

eventually leading to the death of people.

Table 3.1: The detail structure of BreakHis dataset, include 7909 images of breast tumor
tissue.

Magnification Benign Malignant Total
40X 652 1370 1995

100X 644 1437 2081
200X 623 1390 2013
400X 588 1232 1820

Total of Images 2480 5429 7909

23

(a) A (b) DC (c) F (d) LC

(e) MC (f) PC (g) PT (h) TA

Figure 3.3: 40X images of eight different breast tumor tissue.

In the current version, the samples present in the dataset are collected by the SOB

method, also known as partial mastectomy or resection biopsy. Compared to any needle

biopsy method, this type of procedure can remove larger sized tissue samples. The be-

nign and malignant breast tumors can be divided into different types according to the way

the tumor cells are observed under the microscope. The data set currently contains four

histologically different types of benign breast tumors: adenoma (A), fibroadenoma (F),

phyllodes tumor (PT) and renal tubular adenocarcinoma (TA); breast cancer: carcinoma

(DC), lobular carcinoma (LC), mucinous carcinoma (MC) and papillary carcinoma (PC)

in Figure 3.3 Figure 3.4 Figure 3.5 Figure 3.6. To label each image, they have unique

file information, as biopsy method, tumor classification, tumor type, patient identification,

magnification.

The optical technical parameters of the microscope include numerical aperture, resolu-

tion, magnification, depth of focus, field of view width, working distance, poor coverage,

etc. Not all of these parameters are higher, the better. They are interrelated and restrictive.

The actual use should be adjusted according to the actual situation.

Regarding the magnification of the microscope, it is not the greater the better, we need

to choose the most appropriate size for the diagnosis of breast tumors. The larger the

magnification of the microscope, the smaller the field of view, the larger the cells you see,

24

(a) A (b) DC (c) F (d) LC

(e) MC (f) PC (g) PT (h) TA

Figure 3.4: 100X images of eight different breast tumor tissue.

(a) A (b) DC (c) F (d) LC

(e) MC (f) PC (g) PT (h) TA

Figure 3.5: 200X images of eight different breast tumor tissue.

but the smallest number; the smaller the magnification of the microscope, the larger the

field of view, the smaller the cells you see, but the largest number; in order to see Be clear

about the object to be observed. If the microscope magnification is larger, the structure

to be observed may not be in the field of view. Therefore, it is not better to enlarge the

magnification. It is necessary to adjust it according to the needs and choose the appropriate

magnification. Therefore, in our experiments, we will also choose the most appropriate

method for diagnosing breast tumors.

25

(a) A (b) DC (c) F (d) LC

(e) MC (f) PC (g) PT (h) TA

Figure 3.6: 400X images of eight different breast tumor tissue.

26

CHAPTER 4

EXPERIMENT AND ANALYSIS

In our project, we will conduct model building and evaluation according to the following

steps:

• Step 1: Data analysis and preprocessing.

• Step 2: Create the model.

• Step 3: Model training.

• Step 4: Model evaluation.

• Step 5: Architecture optimization.

In the experiment, the entire task was completed using the keras framework and tensorflow-

gpu. In addition, we will introduce matplotlib, pandas, numpy in python libraries; sklearn

libraries to help us complete experiments.

4.1 Data Pre-processing

Regarding the data processing part, the auxiliary diagnosis of medical diseases requires a

large amount of data, and it also needs to be updated at any time. However, at present we

have not been able to meet such standards and requirements. Therefore, I chose the dataset

with guaranteed quality and quantity, the BreakHis dataset. But this dataset is not perfect,

so we need to process it in a unified standard before using it. Because in the neural network

model, in most cases, people think that different types of data are evenly distributed, and

many algorithms are also based on this assumption. But under real circumstances, this is

often not the case. For example, the situation that the machine sends a failure is what we

27

want to predict, but in fact the probability of failure is very low, so the sample size that

causes the failure is very small. Even if you set all the prediction results to normal, the

accuracy rate is still very high, but this model is a useless model, and similar examples are

very common. Therefore, we consider pre-processing in the dataset. Our experiments are

mainly from the data level.

The first is the environment used in our experiment, which requires Python3, tensorflow-

gpu and keras. Based on the needs of our experiment, we use ImageDataGenerator to pro-

cess pictures in batches. It is a picture sample intensifier. The image generated after each

sample iteration is a modified picture to achieve the purpose of data enhancement. Batches

of tensor image data are generated through real-time data enhancement, and the data will

continue to cycle. In addition, it can also expand the size of the data set and enhance

the generalization ability of the model. We will optimize the parameters Table 4.1 in the

experiment.

Table 4.1: Data processing parameters in ImageDataGenerator.

datagen = ImageDataGenerator
rotation range = rotation range,

shear range = shear range,
zoom range = zoom range,

horizontal flip = horizontal flip,
vertical flip = vertical flip

4.2 Experimental Environment

In our experiments, for the dataset in Table 4.2, we divided the dataset into 70% training

split of 5537 images, 10% validation split of 791 images, and 20% test split of 1581 images.

The following Table 4.3 provides our experimental environment:

28

Table 4.2: Dataset information.

Name BreakHis Dataset
Size 4.27G

Training dataset 5537
Testing dataset 1581

Validation dataset 791

Table 4.3: Experimental environment.

Hardware & Software
Processor i-8700k @3.7GHz
Memory 64G

Graphics Memory 2080Ti 11G
Operating System ubuntu

Language python3.7.3
Library Keras

4.3 Original ResNet-50

The residual network uses shortcut connections to solve the problem of degradation. Both

the training set and the check set prove that the deeper the network, the smaller the error

rate. Because for a neural network model, if the model is optimal, then training can easily

optimize the residual mapping to 0. At this time, only identity mapping is left, so no matter

how much depth is added, in theory the network will always be in an optimal state. Because

it is equivalent to all the additional networks behind it will transmit information along the

identity mapping, it can be understood that the layers behind the optimal network do not

have the ability to extract features, and actually have no effect. In this way, the performance

of the network will not decrease as the depth increases.

Therefore, by comparison, we chose the ResNet-50 as our experimental architecture.

First, we set the input dataset to a uniform size mode with a height of 115 and a width

of 175. Then set the parameters in the model uniformly, and set the channels to 3. In

29

the original ResNet, for each layer, after each block, the number of channels becomes 4

planes, so the number of input channels for the next block should be 4 planes, so we define

self.inplanes = planes * block.expansion. The planes are unchanged, and are always the

incoming parameters, such as 64, 128, 256, and 512. It becomes the number of output

channels after each block, which means that the number of input channels of the next block

changes. The stride parameter passed in when constructing each layer is different. This

parameter represents the construction of the first block, but other blocks are not affected by

stride. In addition, it may affect the size of the feature map at this time.

In the ResNet-50 architecture, like Figure 4.1, the first layer: a total of 3 blocks, each

block has 3 layers, a total of 9 layers, are not affected by stride, that is stride=1, so the size

of the feature map is not changed; the second layer: A total of 4 blocks, each block has 3

layers, a total of 12 layers. The second layer of the first block is affected by stride, which

may change the size of the feature map, the remaining 11 layers do not change the size of

the feature map; the third layer: a total of 6 blocks, each block has 3 layers, a total of 18

layers . The second layer of the first block is affected by stride, which may change the size

of the feature map, and the remaining 17 layers do not change the size of the feature map;

the fourth layer: a total of 3 blocks, each block has 3 layers, a total of 9 layers . In order to

improve the accuracy and performance of the model, we have added additional layers for

classification. We set the parameters of layers to 2048, 512, and 32.

To solve the problem of overfitting, that is to say, the model performs well on the

training data, but performs poorly on the test data. The best way is to increase the training

data, but in the case of a certain training data, in order to prevent the model from overfitting,

we generally use the dropout method, by randomly discarding certain neurons in a layer to

achieve the purpose of reducing overfitting. Therefore, we set the dropout layer to 0.3.

The experimental parameters of our project are also given in Table 4.4:

30

Figure 4.1: 50 layer ResNet architecture.

31

Table 4.4: Original ResNet experimental parameters.

Parameters
Activation Function ReLU

Learning Rate 0.001
Optimizer Adam

Loss Function categorical crossentropy
Batch Size 64

Epoch 30
Dropout Layer 0.3

4.4 Proposed Method

Based on the original ResNet-50 architecture, we will optimize the original architecture.

For the evolutionary algorithm accepted earlier, we will use naive evolution from the NNI

framework to optimize the ResNet-50 architecture. The evolutionary algorithm comes from

”large-scale evolution of image classifiers” [55]. It will randomly generate an overall spa-

tial search based on the ResNet architecture. In each generation, better results will be

selected, and some mutations will be made to its next generation (for example, changing

a superparameter, adding or subtracting one layer). It can find the best combination of

parameters and improve the performance of the architecture.

Tuner in NNI framework is an automatic machine learning algorithm that will generate

a new configuration for the next trial. The new trial will run with this set of configurations.

We chose one of Naı̈ve Evolution (Naive Evolution Algorithm) to implement our experi-

ment. The naive evolutionary algorithm requires many trials to be effective, but it is also

very simple and it is easy to extend new functions. This is the method we actually applied

to the experiment.

According to the experimental steps, we first install the NNI framework. About the

realization of genetic algorithm in NNI framework, all training datasets in the search phase

are set to epoch is 30, population size is 20, concurrency is 4 and max iteration number is

32

100. Therefore, the parameter settings are based on the reference values set by the NNI

framework and the content of the literature. The parameters we will search are: batch

size, learning rate, optimizer, three classification layer parameters, dropout, horizontal flip,

vertical flip, rotation range, shear range, zoom range. Because doing so can get better

results, but can control fewer calculations and shorten the search time.

Then perform a neural network search to obtain the best hyperparameters. In this pro-

cess, in addition to the function of using genetic algorithms, it also has the function of

supporting the weight migration model. After the hyperparameter search is completed, we

change the hyperparameters in the original ResNet to create a proposed method for the last

step. According to the hyperparameter search results Table 4.5, among them, we adjust the

newly added three classification layer parameters to 64, 0, 64. There is also a dropout layer

set to 0.108875.

Table 4.5: Proposed method experimental parameters.

Parameters
Activation Function ReLU

Activation Function of
Output Layer

Softmax

Learning Rate 0.0001
Optimizer Adam

Loss Function categorical crossentropy
Batch Size 16

Epoch 30
Dropout Layer 0.108875

First, in order to get a better dataset and balanced data, we first adjust the parameters

Table 4.6 in ImageDataGenerator to improve the quality of the dataset.

33

Table 4.6: Proposed method data processing parameters in ImageDataGenerator.

ImageDataGenerator Parameters
rotation range 20

shear range 0.0667
zoom range 0.4885

horizontal flip False
vertical flip True

4.4.1 Loss Function

The loss function is one of the most important concepts in machine learning. By calculating

the size of the loss function, it is the main basis in the machine learning process and an

important criterion to judge the merits of the algorithm after learning. Therefore, I chose

cross entropy as the basis for proposed method architecture. Cross entropy is used as a loss

function in neural networks. Among them Equation 4.1, y represents the distribution of

real labels, a is the predicted label distribution of the trained model, and the cross-entropy

loss function can measure the similarity of y and a. Another benefit of cross-entropy as a

loss function is to avoid the problem of a decrease in the learning rate of the mean square

error loss function, because the learning rate can be controlled by the output error.

C = − 1

n

∑
x

[y ln a+ (1− y) ln(1− a)] (4.1)

Among them, the selected categorical crossentropy Equation 4.2 is more suitable for

multi-classification problems, and using softmax as the activation function of the output

layer is our choice.

loss = −
n∑

i=1

ŷi1 log yi1 + ŷi2 log yi2+, . . . ,+ŷim log yim (4.2)

n is the number of samples and m is the number of classifications. Note that this is a

34

multi-output loss function, so its loss calculation is also multiple in Equation 4.3:

∂loss
∂yi1

= −
n∑

i=1

ŷi1
yi1

∂loss
∂yi2

= −
n∑

i=1

ŷi2
y2

· · · · · · · · ·

∂loss
∂yim

= −
n∑

i=1

ŷim
yim

(4.3)

When using the categorical crossentropy loss function, my labels are in multi-category

mode. For example, if you have 10 categories, the label of each sample should be a 10-

dimensional vector. The vector has a value of 1 in the corresponding index position and the

rest is 0. This is how our experiments are conducted.

4.4.2 Activation Function

In order to better improve the performance of the model, we chose different activation func-

tions. For the three classification layers we added, we used the ReLU activation function.

For the input layer, we used the softmax activation function. Below I will talk about their

advantages.

ReLU Activation Function

Rectified Linear Unit (ReLU) is a commonly used activation function in artificial neural

networks [64]. It usually refers to a nonlinear function represented by a ramp function

and its variants. Linear rectification is considered to have a certain biological principle,

and because it usually has a better effect than other commonly used activation functions

in practice, it is widely used in the field of computer vision artificial intelligence such as

image recognition by today’s deep neural networks [64].

35

In a general sense, the linear rectification function refers to the ramp function in math-

ematics, namely Equation 4.4:

f(x) = max(0, x) (4.4)

In the neural network, the linear rectification as the activation function of the neuron

defines the linear transformation of the neuron wTx+ b after the nonlinear output. In other

words, for the input vector X from the previous neural network that enters the neuron, the

neuron using the linear rectification activation function will output Equation 4.5:

max
(
0,wTx+ b

)
(4.5)

To the next layer of neurons or as the output of the entire neural network. Compared

with traditional neural network activation functions, such as logistic sigmoid, tanh hyper-

bolic functions, ReLU has the following advantages:

1) More efficient gradient descent and back propagation, avoiding the problems of gra-

dient explosion and gradient disappearance. Moreover, since the gradient of the

non-negative interval is constant, ReLU can solve the sigmoid vanishing gradient

problem, so that the convergence rate of the model is maintained at a stable state;

2) For linear functions, ReLU is more expressive, especially in deep networks;

3) For non-linear functions, the calculation gradient is super simple, which makes the

overall calculation cost of the neural network decrease;

4) Principles of biomimicry: Related brain studies have shown that the coding of biolog-

ical neurons is usually scattered and sparse. Linearity correction and regularization

can be used to debug the activity of neurons in the machine neural network.

36

Softmax Activation Function

The sigmoid function and softmax function in the activation function are mainly used for

the output of the neural network output layer. The softmax function can be regarded as

a general case of the Sigmoid function, which is used for multi-classification problems.

Because the multi-classification problem is to use the softmax activation function with

the classification cross-entropy function to achieve better results, we choose the softmax

activation function as our output layer function.

The Softmax function compresses the K-dimensional real number vector into another

K-dimensional real number vector, where each element in the vector has a value between

(0, 1). Commonly used in multi-classification problems. Suppose we have an array, S,

representing the i element in S, then the softmax value of this element is Equation 4.6:

Si =
ei∑
j e

j
(4.6)

4.5 Results

4.5.1 Breast Cancer - 40X Result

For different microscope magnification datasets, we have done separate analysis. Below I

will show the results separately, and finally make a comprehensive comparison and sum-

mary. In the 40X dataset, using the original ResNet and the proposed method, we compared

the loss, accuracy of the training dataset and the validation dataset. The following line chart

Figure 4.2, Figure 4.3, Figure 4.4 and Figure 4.5 shows the experiment results. Compared

with the original ResNet, the proposed method has greatly improved performance and is a

very meaningful experimental project.

Table 4.7, Table 4.8, Table 4.9, Figure 4.6 shows the seven parameters in the original

ResNet and proposed method architecture in detail. By comparing the training dataset,

validation dataset and testing dataset, the proposed method experimental data has also been

37

Figure 4.2: Original ResNet and proposed method 40X validation loss compare.

Figure 4.3: Original ResNet and proposed method 40X validation accuracy compare.

38

Figure 4.4: Original ResNet and proposed method 40X training loss compare.

Figure 4.5: Original ResNet and proposed method 40X training accuracy compare.

39

improved, which proves that our experiment the significance can improve the auxiliary

diagnosis of breast tumor diseases. The improvement of its parameters also indicates the

success of the experiment. We can intuitively see the results of our test after the training and

validation process. The accuracy of the original ResNet model can be achieved 94.17%,

while the proposed method model can be achieved 98.48%. It is increased 4.31%.

Table 4.7: Hyperparameters compare between original ResNet and proposed method for
40X training dataset.

Hyperparameters Original
ResNet

Proposed
method

Accuracy 0.9935 0.9960
F1 Score 0.9711 0.9859
Precision 0.9765 0.9794

Recall 0.9667 0.9935
Sensitivity 0.9667 0.9935
Specificity 0.9954 0.9977

Correlation coefficient 0.9670 0.9835

Table 4.8: Hyperparameters compare between original ResNet and proposed method for
40X validation dataset.

Hyperparameters Original
ResNet

Proposed
method

Accuracy 0.9435 0.9833
F1 Score 0.6774 0.9129
Precision 0.7360 0.9061

Recall 0.6770 0.9255
Sensitivity 0.6770 0.9255
Specificity 0.9659 0.9900

Correlation coefficient 0.6592 0.9040

In order to make a more comprehensive comparison, we also conducted a horizon-

tal comparison from different types of breast tumors. The results of training Figure 4.7,

40

(a) Accuracy (b) F1 Score

(c) Precision (d) Recall

(e) Sensitivity (f) Specificity

(g) Correlation Coefficient

Figure 4.6: Hyperparameters compare between original ResNet and proposed method for 40X
dataset.

41

Table 4.9: Hyperparameters compare between original ResNet and proposed method for
40X testing dataset.

Hyperparameters Original
ResNet

Proposed
method

Accuracy 0.9417 0.9848
F1 Score 0.6982 0.9355
Precision 0.7223 0.9236

Recall 0.6866 0.9546
Sensitivity 0.6866 0.9546
Specificity 0.9635 0.9911

Correlation coefficient 0.6656 0.9276

validation Figure 4.8 and testing Figure 4.9 can clearly show that for four benign breast

tumors and four malignant breast tumors, the overall ResNet architecture has been opti-

mized. Performance is better than the original architecture. This phenomenon shows that

our proposed method is meaningful, it can effectively help doctors play a certain role in the

field of auxiliary medicine.

4.5.2 Breast Cancer - 100X Result

In the 100X dataset, using the original ResNet and the proposed method, we compared the

loss, accuracy of the training dataset and the validation dataset. The following line chart

Figure 4.10, Figure 4.11, Figure 4.12, and Figure 4.13 shows the experiment results. Com-

pared with the original ResNet, the proposed method has greatly improved performance

and is a very meaningful experimental project.

Table 4.10, Table 4.11, Table 4.12, Figure 4.14 shows the seven parameters in the orig-

inal ResNet and proposed method architecture in detail. By comparing the training dataset,

validation dataset and testing dataset, the proposed method experimental data has also been

improved, which proves that our experiment the significance can improve the auxiliary

diagnosis of breast tumor diseases. The improvement of its parameters also indicates the

success of the experiment. We can intuitively see the results of our test after the training and

42

(a) Accuracy (b) F1 Score

(c) Precision (d) Recall

(e) Sensitivity (f) Specificity

(g) Correlation Coefficient

Figure 4.7: Original and proposed method hyperparameters compare between eight breast tumors
from 40X training dataset.

43

(a) Accuracy (b) F1 Score

(c) Precision (d) Recall

(e) Sensitivity (f) Specificity

(g) Correlation Coefficient

Figure 4.8: Original and proposed method hyperparameters compare between eight breast tumors
from 40X validation dataset.

44

(a) Accuracy (b) F1 Score

(c) Precision (d) Recall

(e) Sensitivity (f) Specificity

(g) Correlation Coefficient

Figure 4.9: Original and proposed method hyperparameters compare between eight breast tumors
from 40X testing dataset.

45

Figure 4.10: Original ResNet and proposed method 100X validation loss compare.

Figure 4.11: Original ResNet and proposed method 100X validation accuracy compare.

46

Figure 4.12: Original ResNet and proposed method 100X training loss compare.

Figure 4.13: Original ResNet and proposed method 100X training accuracy compare.

47

validation process. The accuracy of the original ResNet model can be achieved 94.36%,

while the proposed method model can be achieved 97.46%. It is increased 3.1%.

Table 4.10: Hyperparameters compare between original ResNet and proposed method for
100X training dataset.

Hyperparameters Original
ResNet

Proposed
method

Accuracy 0.9856 0.9941
F1 Score 0.8430 0.9704
Precision 0.8540 0.9693

Recall 0.8529 0.9718
Sensitivity 0.8529 0.9718
Specificity 0.9914 0.9963

Correlation coefficient 0.7860 0.9666

Table 4.11: Hyperparameters compare between original ResNet and proposed method for
100X validation dataset.

Hyperparameters Original
ResNet

Proposed
method

Accuracy 0.9319 0.9839
F1 Score 0.7480 0.9054
Precision 0.6654 0.9097

Recall 0.5955 0.9051
Sensitivity 0.5955 0.9051
Specificity 0.9560 0.9899

Correlation coefficient 0.5430 0.8962

In order to make a more comprehensive comparison, we also conducted a horizontal

comparison from different types of breast tumors. The results of training Figure 4.15, val-

idation Figure 4.16, and testing Figure 4.17 can clearly show that for four benign breast

tumors and four malignant breast tumors, the overall ResNet architecture has been opti-

mized. Performance is better than the original architecture. This phenomenon shows that

48

(a) Accuracy (b) F1 Score

(c) Precision (d) Recall

(e) Sensitivity (f) Specificity

(g) Correlation Coefficient

Figure 4.14: Hyperparameters compare between original ResNet and proposed method for 100X
dataset.

49

Table 4.12: Hyperparameters compare between original ResNet and proposed method for
100X testing dataset.

Hyperparameters Original
ResNet

Proposed
method

Accuracy 0.9436 0.9746
F1 Score 0.6716 0.8720
Precision 0.7011 0.8710

Recall 0.6909 0.8754
Sensitivity 0.6909 0.8754
Specificity 0.9647 0.9839

Correlation coefficient 0.6474 0.8561

our proposed method is meaningful, it can effectively help doctors play a certain role in the

field of auxiliary medicine.

4.5.3 Breast Cancer - 200X Result

In the 200X dataset, using the original ResNet and the proposed method, we compared the

loss, accuracy of the training dataset and the validation dataset. The following line chart

Figure 4.18, Figure 4.19, Figure 4.20 and Figure 4.21 shows the experiment results. Com-

pared with the original ResNet, the proposed method has greatly improved performance

and is a very meaningful experimental project.

Table 4.13, Table 4.14, Table 4.15, Figure 4.22 shows the seven parameters in the orig-

inal ResNet and proposed method architecture in detail. By comparing the training dataset,

validation dataset and testing dataset, the proposed method experimental data has also been

improved, which proves that our experiment the significance can improve the auxiliary

diagnosis of breast tumor diseases. The improvement of its parameters also indicates the

success of the experiment. We can intuitively see the results of our test after the training and

validation process. The accuracy of the original ResNet model can be achieved 93.00%,

while the proposed method model can be achieved 98.31%. It is increased 5.31%.

50

(a) Accuracy (b) F1 Score

(c) Precision (d) Recall

(e) Sensitivity (f) Specificity

(g) Correlation Coefficient

Figure 4.15: Original and proposed method hyperparameters compare between eight breast tumors
from 100X training dataset.

51

(a) Accuracy (b) F1 Score

(c) Precision (d) Recall

(e) Sensitivity (f) Specificity

(g) Correlation Coefficient

Figure 4.16: Original and proposed method hyperparameters compare between eight breast tumors
from 100X validation dataset.

52

(a) Accuracy (b) F1 Score

(c) Precision (d) Recall

(e) Sensitivity (f) Specificity

(g) Correlation Coefficient

Figure 4.17: Original and proposed method hyperparameters compare between eight breast tumors
from 100X testing dataset.

53

Figure 4.18: Original ResNet and proposed method 200X validation loss compare.

Figure 4.19: Original ResNet and proposed method 200X validation accuracy compare.

54

Figure 4.20: Original ResNet and proposed method 200X training loss compare.

Figure 4.21: Original ResNet and proposed method 200X training accuracy compare.

Table 4.13: Hyperparameters compare between original ResNet and proposed method for
200X training dataset.

Hyperparameters Original
ResNet

Proposed
method

Accuracy 0.9944 0.9966
F1 Score 0.9750 0.9875
Precision 0.9743 0.9853

Recall 0.9762 0.9899
Sensitivity 0.9762 0.9899
Specificity 0.9965 0.9977

Correlation coefficient 0.9714 0.9851

55

Table 4.14: Hyperparameters compare between original ResNet and proposed method for
200X validation dataset.

Hyperparameters Original
ResNet

Proposed
method

Accuracy 0.9318 0.9785
F1 Score 0.6408 0.8995
Precision 0.6695 0.9140

Recall 0.6355 0.8877
Sensitivity 0.6355 0.8877
Specificity 0.9584 0.9845

Correlation coefficient 0.6056 0.8858

Table 4.15: Hyperparameters compare between original ResNet and proposed method for
200X testing dataset.

Hyperparameters Original
ResNet

Proposed
method

Accuracy 0.9300 0.9831
F1 Score 0.6288 0.9238
Precision 0.6499 0.9251

Recall 0.6196 0.9272
Sensitivity 0.6196 0.9272
Specificity 0.9568 0.9888

Correlation coefficient 0.5890 0.9140

56

In order to make a more comprehensive comparison, we also conducted a horizontal

comparison from different types of breast tumors. The results of training Figure 4.24, val-

idationFigure 4.23, and testing Figure 4.25 can clearly show that for four benign breast

tumors and four malignant breast tumors, the overall ResNet architecture has been opti-

mized. Performance is better than the original architecture. This phenomenon shows that

our proposed method is meaningful, it can effectively help doctors play a certain role in the

field of auxiliary medicine.

4.5.4 Breast Cancer - 400X Result

For the 400X dataset, using the original ResNet and the proposed method, we compared

the loss, accuracy of the training dataset and the validation dataset. The following line chart

Figure 4.26, Figure 4.27, Figure 4.28 and Figure 4.29 shows the experiment results. Com-

pared with the original ResNet, the proposed method has greatly improved performance

and is a very meaningful experimental project.

Table 4.16, Table 4.17, Table 4.18, Figure 4.30 shows the seven parameters in the orig-

inal ResNet and proposed method architecture in detail. By comparing the training dataset,

validation dataset and testing dataset, the proposed method experimental data has also been

improved, which proves that our experiment the significance can improve the auxiliary

diagnosis of breast tumor diseases. The improvement of its parameters also indicates the

success of the experiment. We can intuitively see the results of our test after the training and

validation process. The accuracy of the original ResNet model can be achieved 90.78%,

while the proposed method model can be achieved 97.22%. It is increased 6.44%.

In order to make a more comprehensive comparison, we also conducted a horizontal

comparison from different types of breast tumors. The results of trainingFigure 4.32, val-

idationFigure 4.31, and testing Figure 4.33 can clearly show that for four benign breast

tumors and four malignant breast tumors, the overall ResNet architecture has been opti-

57

(a) Accuracy (b) F1 Score

(c) Precision (d) Recall

(e) Sensitivity (f) Specificity

(g) Correlation Coefficient

Figure 4.22: Hyperparameters compare between original ResNet and proposed method for 200X
dataset.

58

(a) Accuracy (b) F1 Score

(c) Precision (d) Recall

(e) Sensitivity (f) Specificity

(g) Correlation Coefficient

Figure 4.23: Original and proposed method hyperparameters compare between eight breast tumors
from 200X validation dataset.

59

(a) Accuracy (b) F1 Score

(c) Precision (d) Recall

(e) Sensitivity (f) Specificity

(g) Correlation Coefficient

Figure 4.24: Original and proposed method hyperparameters compare between eight breast tumors
from 200X training dataset.

60

(a) Accuracy (b) F1 Score

(c) Precision (d) Recall

(e) Sensitivity (f) Specificity

(g) Correlation Coefficient

Figure 4.25: Original and proposed method hyperparameters compare between eight breast tumors
from 200X testing dataset.

61

Figure 4.26: Original ResNet and proposed method 400X validation loss compare.

Figure 4.27: Original ResNet and Proposed method 400X validation accuracy compare.

Table 4.16: Hyperparameters compare between original ResNet and proposed method for
400X training dataset.

Hyperparameters Original
ResNet

Proposed
method

Accuracy 0.9187 0.9962
F1 Score 0.5294 0.9857
Precision 0.6851 0.9860

Recall 0.5150 0.9854
Sensitivity 0.5150 0.9854
Specificity 0.9445 0.9973

Correlation coefficient 0.5203 0.9830

62

Figure 4.28: Original ResNet and proposed method 400X training loss compare.

Figure 4.29: Original ResNet and proposed method 400X training accuracy compare.

Table 4.17: Hyperparameters compare between original ResNet and proposed method for
400X validation dataset.

Hyperparameters Original
ResNet

Proposed
method

Accuracy 0.9039 0.9872
F1 Score 0.5140 0.9465
Precision 0.6053 0.9450

Recall 0.4309 0.9497
Sensitivity 0.4309 0.9497
Specificity 0.9345 0.9915

Correlation coefficient 0.5105 0.9383

63

(a) Accuracy (b) F1 Score

(c) Precision (d) Recall

(e) Sensitivity (f) Specificity

(g) Correlation Coefficient

Figure 4.30: Hyperparameters compare between original ResNet and proposed method for 400X
dataset.

64

Table 4.18: Hyperparameters compare between original ResNet and proposed method for
400X testing dataset.

Hyperparameters Original
ResNet

Proposed
method

Accuracy 0.9078 0.9722
F1 Score 0.4582 0.8653
Precision 0.5834 0.8764

Recall 0.4578 0.8594
Sensitivity 0.4578 0.8594
Specificity 0.9368 0.9817

Correlation coefficient 0.4383 0.8490

mized. Performance is better than the original architecture. This phenomenon shows that

our proposed method is meaningful, it can effectively help doctors play a certain role in the

field of auxiliary medicine.

4.6 Evaluation Metrics

Eight different breast tumors have different characteristics. These characteristics are what

the machine wants to learn and are the main basis for classification.

Adenosis is characterized by lobular acinar, peripheral ducts and connective tissue hy-

perplasia, and the lobular structure is basically preserved. According to different histolog-

ical changes at different development stages, it can be divided into 2 types:

1) The lobular hyperplasia is mainly manifested by the number of lobules and the num-

ber of acinar in the lobule. The epithelial cells are not significantly changed or may be

double-layered or multi-layered, and the intralobular duct may be slightly expanded.

2) Leaflet fibrosis type, the main features are interstitial fibrosis and acinar atrophy in

the leaflet. The outline of the leaflet sometimes exists, but it can also disappear,

leaving only some atrophied ducts.

Fibroadenoma Figure 4.34, the main feature is that in addition to the peripheral ducts

65

(a) Accuracy (b) F1 Score

(c) Precision (d) Recall

(e) Sensitivity (f) Specificity

(g) Correlation Coefficient

Figure 4.31: Original and proposed method hyperparameters compare between eight breast tumors
from 400X validation dataset.

66

(a) Accuracy (b) F1 Score

(c) Precision (d) Recall

(e) Sensitivity (f) Specificity

(g) Correlation Coefficient

Figure 4.32: Original and proposed method hyperparameters compare between eight breast tumors
from 400X training dataset.

67

(a) Accuracy (b) F1 Score

(c) Precision (d) Recall

(e) Sensitivity (f) Specificity

(g) Correlation Coefficient

Figure 4.33: Original and proposed method hyperparameters compare between eight breast tumors
from 400X testing dataset.

68

and acinar hyperplasia, the interstitial connective tissue also has obvious hyperplasia in the

leaflets. In the early stage, the lobule was enlarged due to the continued proliferation of

acinus; in the later stage, the connective tissue in the lobule was significantly increased,

causing the acinar to disperse and deform.

Figure 4.34: Peripheral ducts, acinars and interstitium all showed obvious hyperplasia,
some acinars and ducts expanded, and some lymphocytes infiltrated in the interstitium.

Phyllodes tumor Figure 4.35 are a group of tumors that are basically similar to fibroade-

noma, with clear boundaries and bidirectional differentiation. Its histological feature is that

the bilayer epithelial cells with fissure-like distribution are surrounded by overgrown cell-

rich mesenchymal components, forming a typical leaf-like structure. PT typically manifests

as a way of growing into the lumen, accompanied by leaf-like protrusions that protrude into

the expansion cavity. In the area in close contact with the epithelial components, the in-

terstitial cell components are more abundant and distributed in a band shape; in the loose

interstitial area, the cell density is low.

Tubular adenona of breast is usually less than 4cm in diameter. Under the microscope,

the tumor is composed of round or oval glands with a uniform size. The gland contains two

layers of epithelial cells, with few interstitial components, and may contain a small number

of lymphocytes.

Histological characteristics of lobular carcinomaFigure 4.36: The lobular structure still

exists, but it becomes larger, and the acinar cells are piled up and arranged irregularly. The

69

Figure 4.35: Leaf-like protrusions protruding into the expansion cavity are typical features.

size and shape of the cells are relatively uniform, round, with intense nuclear staining, and

may have mitotic figures.

Figure 4.36: Acinar cells are stacked together and appear round.

The pathological manifestation of mucinous adenocarcinoma is that a large number of

extracellular mucus floats with solid tumors, ropes, glandular tubes, and sieve-like struc-

tural cancer tissue foci.

4.7 Discussion

The question about the magnification of the microscope is not as large as possible, we ana-

lyzed it through the table of test results in the experimental part Table 4.9,Table 4.12,Table 4.15,

70

and Table 4.18, the accuracy of the test result of the dataset with a magnification of 40X

is 98.48%, the accuracy of the test result of the data set of 100X is 97.46%, the accuracy

of the test result of the data set of 200X is 98.31%, The accuracy of the test results with

the 400X data set is 97.22%, which clearly shows that the 40X size dataset is very suitable

for the auxiliary detection of breast tumors, because the magnification of the microscope is

related to the number of cells in the field of view, and the 40X size can be very good, and

shows the special characteristics of the disease. Choosing the appropriate microscope mag-

nification to conduct experiments can effectively improve the accuracy and effectiveness of

our experiments.

Figure 4.6, Figure 4.14, Figure 4.22, and Figure 4.30, the red lines in the figure rep-

resent the proposed method, and the blue lines represent original ResNet can intuitively

indicate that the proposed method is superior to the original one. The original ResNet

training dataset hyperparameters performed very well, but after the validation dataset and

the test dataset, the results were significantly reduced. Our analysis may have the follow-

ing problems: model problems, dataset problems, or overfitting problems. We generally

divide the dataset into training dataset, validation dataset and test dataset. The training

dataset is used to train the parameters of the model; the validation dataset is used to verify

the performance of different models; the test dataset is used to test the performance of the

trained model. Our dataset is collected by the official and has a detail label, which is a very

powerful source, so we believe that the quality of the dataset is not a problem. Secondly,

regarding overfitting, overfitting means that the parameters are adjusted too in line with

the sample, and the method to be solved is the same as the above problem. Adjust the

dataset samples and parameters. Regularization, dropout, redesign of the model, and early

termination of training can all be procedures to avoid overfitting. So we want to prevent

overfitting problems, we adjusted and optimized the dropout layer in proposed method.

In summary, we think that the most likely problem is the ResNet model. The perfor-

mance of a model is not due to its error on the training dataset, but whether its error on the

71

test dataset is close to the error on the training dataset. That is to say, when the accuracy of

the validation dataset and the test dataset is low, it may not be a problem of the data itself,

but the model has not found the most suitable parameters and settings, and does not have

good generalization ability. Therefore, we have made a lot of parameter adjustments in the

proposed method to achieve the best model. Our proposed method model has a very good

average performance. It has shown good performance in the training dataset, validation

dataset and testing dataset, avoiding the problems mentioned above.

The linear charts of Figure 4.2, Figure 4.3, Figure 4.10, Figure 4.11, Figure 4.18, Fig-

ure 4.19, Figure 4.27 and Figure 4.26 can show that the validation loss of the original

ResNet is very unstable because the parameter is the loss value calculated by our preset

loss function, if it is unstable, it means that the model does not have good prediction ability.

Loss is used in the model to optimize parameters and achieve gradient descent. In general,

the smaller the loss, the higher the network optimization. When training through the model,

most of them indicate that the overall trend is that loss decreases and accuracy increases.

In order to maintain a stable loss, we make improvements in the proposed method architec-

ture. It can be seen that after the improvement, the trend of loss is very stable and maintains

a relatively low value. Therefore, the proposed method model is effective.

72

CHAPTER 5

CONCLUSION

Through a comprehensive comparison of the experimental part, the proposed method has

made significant progress relative to the original ResNet, indicating that the selected opti-

mal hyperparameters have brought significant progress to the ResNet and improved the ac-

curacy of training and testing. The proposed method can help researchers to analyze breast

tumor diseases more comprehensively and accurately, which is a very useful improvement.

Because in the neural network, in addition to finding the best weight and deviation param-

eters, it is also important to set appropriate hyperparameters. For example, the number of

neurons in each layer, the value of the batch size, the learning rate when the parameter is

updated, the weight decay coefficient, or the learning epoch. The process of finding hyper-

parameters is usually accompanied by many repeated experiments and errors, so it is very

important to find hyperparameters as efficiently as possible. This is what our project did.

By adjusting the hyperparameters in the architecture, these hyperparameters will affect

the learning speed of the neural network and the final classification results, because deep

learning usually takes a lot of time, therefore, in the process of finding hyperparameters,

it is necessary to abandon those illogical problems and use appropriate hyperparameters as

soon as possible. The table in the experimental part effectively shows that the proposed

method is superior to the original ResNet in all aspects. Although the performance of the

original ResNet is also very good, after selecting more suitable hyperparameters, you will

get even better results.

In this project, we used genetic algorithms to optimize the ResNet model and created

an proposed method model based on the BreakHis breast tumor dataset. Compared with

the original ResNet model, it has been significantly improved. For the 40X dataset, the

accuracy rate of the original ResNet model is 94.17%, and our result is improved to 98.48%;

73

for the 100X dataset, the accuracy rate of the original ResNet model is 94.36%, and our

result is improved to 97.46%; For the 200X dataset, the accuracy rate of the original ResNet

model is 93.00%, and our result is improved to 98.31%; for the 400X dataset, the accuracy

rate of the original ResNet model is 90.78%, and our result is improved to 97.22%. This

is a very big improvement. This project can help doctors or patients to judge benign or

malignant breast tumors in time, which is of great significance to society.

In summary, compared to the BreakHis breast tumor dataset, the proposed method is

very useful compared to the original ResNet, and can provide very good medical aided

diagnostic methods. But medical data needs to be updated at any time, and a large amount is

required. Although the BreakHis dataset has detailed labels and high-quality images, it still

has some defects in quantity. In the training of neural network architecture, the imbalance

in the number and type of datasets has a very large impact on the results produced. It is

hoped that in the future, higher quality and quantitative breast tumor datasets can be used

for further experiments to create more meaningful models.

74

Appendices

APPENDIX A

MAIN SOURCE CODE

import os

os.environ[’TF CPP MIN LOG LEVEL’] = ’3’

os.environ[”CUDA VISIBLE DEVICES”] = ”1”

import numpy as np

import pandas as pd

import random

import matplotlib.pyplot as plt

import matplotlib.image as mpimg

from skimage.transform import resize

from models import *

from data processing import data split

from training fn import *

import keras

from keras.layers import *

from keras.models import *

from keras import layers

from keras.utils.data utils import get file

from keras import backend as K

from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau

from keras.optimizers import Adam

from keras.preprocessing.image import ImageDataGenerator

from sklearn.linear model import LogisticRegression

from sklearn.svm import SVC

76

from sklearn.feature selection import SelectFromModel

from sklearn.model selection import cross validate

from sklearn.metrics import accuracy score, f1 score, roc auc score

import time

import logging

import argparse

import tensorflow as tf

import keras.backend.tensorflow backend as KTF

seed value = 42

os.environ[’PYTHONHASHSEED’]=str(seed value)

np.random.seed(seed value)

random.seed(seed value)

tf.random.set random seed(seed value)

config = tf.ConfigProto()

config.gpu options.allow growth=True

session = tf.Session(config=config)

KTF.set session(session)

Name list and magnification list.

magnification list = [’40X’, ’100X’, ’200X’, ’400X’]

benign list = [’adenosis’, ’fibroadenoma’, ’phyllodes tumor’, ’tubular adenoma’]

malignant list = [’ductal carcinoma’, ’lobular carcinoma’, ’mucinous carcinoma’, ’pap-

illary carcinoma’]

cancer list = benign list + malignant list

models = [vgg16 model, vgg19 model, xception model, resnet model, inception model,

inception resnet model]

model num = 3 # Select resnet as the backbone.

model name = models[model num]. name

77

Set image size.

image height=115

image width=175

n channels=3

Get the timestamp and set it as weight name.

timestampEND = time.strftime(”%H%M%S”) + ’’ + time.strftime(”%d%m%Y”)

weight name = ’./models/weights’ + timestampEND +’.h5’

Hyperparameters.

epochs = 2

batch size = 32

learning rate = 0.0001

optimizer = ”ADAM”

lr decay = 0.1

dropout = 0.3

layer1 = 512

layer2 = 128

layer3 = 32

horizontal flip = True

vertical flip = True

rotation range = 10.0

shear range = 0.2

zoom range = 0.2

epochs = 2

batch size = 32

learning rate = 0.0001

optimizer = ”ADAM”

lr decay = 0.1

78

dropout = 0.3

layer1 = 0

layer2 = 0

layer3 = 0

horizontal flip = True

vertical flip = True

rotation range = 10.0

shear range = 0.2

zoom range = 0.2

if optimizer == ”ADAM”:

optimizer type = Adam

if optimizer == ”SGD”:

optimizer type = SGD

iteration = 0

average accuracy = 0.0

for types in magnification list:

if iteration == 0:

load wt = ”Yes”

else:

load wt = ”No”

Load data.

training images, training labels, validation images, validation labels, testing images,

testing labels = data split(magnification = types, validation percent = 0.1, testing percent

= 0.2)

Image augmentation.

datagen = ImageDataGenerator(

rotation range=rotation range,

79

shear range=shear range,

zoom range=zoom range,

horizontal flip=horizontal flip,

vertical flip=vertical flip,

)

datagen.fit(training images)

Build the model.

for i in range(len(models)):

if models[i]. name == model name:

base model = models[i]

base model = base model(image height=image height,image width=

image width,n channels=n channels,load wt=load wt)

Add additional layers for classification.

x = base model.output

x = Dense(2048, activation = ’relu’)(x)

x = Dropout(dropout)(x)

if layer1 >0:

x = Dense(layer1, activation = ’relu’)(x)

x = Dropout(dropout)(x)

if layer2 >0:

x = Dense(layer2, activation = ’relu’)(x)

x = Dropout(dropout)(x)

if layer3 >0:

x = Dense(layer3, activation = ’relu’)(x)

out = Dense(8, activation = ’softmax’)(x)

inp = base model.input

model = Model(inp, out)

80

Load model weight.

try:

model.load weights(weight name)

print(’Weights loaded!’)

except:

print(’No weights defined!’)

pass

Get the timestamp and set it as model name.

model timestamp = time.strftime(”%H%M%S”) + ’-’ + time.strftime(”%d%m%Y”)

saved model name = ’./models/-.hdf5’.format(types, model timestamp)

model.compile(

loss=”categorical crossentropy”,

optimizer=optimizer type(lr=learning rate),

metrics=[f1,’accuracy’])

early stopping = EarlyStopping(patience=10, verbose=2)

model checkpoint = ModelCheckpoint(saved model name, save best only=True, ver-

bose=2)

reduce lr = ReduceLROnPlateau(factor=lr decay, patience=5, verbose=2)

history = model.fit generator(

datagen.flow(training images, training labels, batch size=batch size),

steps per epoch=len(training images) /batch size, validation data=[validation images,

validation labels],

callbacks=[early stopping, model checkpoint, reduce lr], epochs=epochs)

history = model.fit(training images, training labels,

validation data=[validation images, validation labels], # epochs=epochs,

verbose = 0,

batch size=batch size,

81

callbacks=[early stopping, model checkpoint, reduce lr])

Load the best model.

model = keras.models.load model(saved model name, custom objects=’f1’: f1)

Get the test metrics at last step.

test loss, test acc, test f1 = model.evaluate(testing images, testing labels)

model.save weights(weight name)

print(”The test metrics at last step: ”)

print(”The test accuracy for ” + model name + ” with magnification ”+ types +” is ”,

test acc, ” with F1 score of ”, test f1, ”

n”)

print()

Get the average test accuracy.

average accuracy += test acc / 4.0

Print the metrics.

if True:

Print the training metrics.

train logits = model.predict(training images)

train pred = np.argmax(train logits, axis=1)

train true = np.argmax(training labels, axis=1)

print(”=”*15 + ” Training metrics ”.format(types) + ”=”*15)

print metrics(train true, train pred)

Print the validation metrics.

val logits = model.predict(validation images)

val pred = np.argmax(val logits, axis=1)

val true = np.argmax(validation labels, axis=1)

print(”=”*15 + ” Valiation metrics ”.format(types) + ”=”*15)

print metrics(val true, val pred)

82

Print the test metrics.

test logits = model.predict(testing images)

test pred = np.argmax(test logits, axis=1)

test true = np.argmax(testing labels, axis=1)

print(”=”*15 + ” Test metrics ”.format(types) + ”=”*15)

print metrics(test true, test pred)

Destory the useless model.

iteration += 1

del model

keras.backend.clear session()

83

APPENDIX B

ORIGINAL RESNET SOURCE CODE

import os

os.environ[’TF CPP MIN LOG LEVEL’] = ’3’

os.environ[”CUDA VISIBLE DEVICES”] = ”1”

import nni

import numpy as np

import pandas as pd

import random

import matplotlib.pyplot as plt

import matplotlib.image as mpimg

from skimage.transform import resize

from models import *

from data processing import data split

from training fn import *

import keras

from keras.layers import *

from keras.models import *

from keras import layers

from keras.utils.data utils import get file

from keras import backend as K

from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau

from keras.optimizers import Adam, SGD

from keras.preprocessing.image import ImageDataGenerator

from sklearn.linear model import LogisticRegression

84

from sklearn.svm import SVC

from sklearn.feature selection import SelectFromModel

from sklearn.model selection import cross validate

from sklearn.metrics import accuracy score, f1 score, roc auc score

import time

import logging

import argparse

import shutil

import tensorflow as tf

import keras.backend.tensorflow backend as KTF

logger = logging.getLogger(’BreakHist’)

class SendMetrics(keras.callbacks.Callback):

def on epoch end(self, epoch, logs=):

nni.report intermediate result(logs[”f1”])

seed value = 42

os.environ[’PYTHONHASHSEED’]=str(seed value)

np.random.seed(seed value)

random.seed(seed value)

tf.random.set random seed(seed value)

config = tf.ConfigProto()

config.gpu options.allow growth=True

session = tf.Session(config=config)

KTF.set session(session)

Name list and magnification list.

magnification list = [’40X’, ’100X’, ’200X’, ’400X’]

benign list = [’adenosis’, ’fibroadenoma’, ’phyllodes tumor’, ’tubular adenoma’]

85

malignant list = [’ductal carcinoma’, ’lobular carcinoma’, ’mucinous carcinoma’, ’pap-

illary carcinoma’]

cancer list = benign list + malignant list

Model list.

models = [vgg16 model, vgg19 model, xception model, resnet model, inception model,

inception resnet model]

model num = 3 # Select resnet as the backbone.

model name = models[model num]. name

Set image size.

image height=115

image width=175

n channels=3

def main(args):

Creater model dir.

if not os.path.exists(”./models/”):

os.makedirs(”./models/”)

Get the timestamp and set it as weight name.

timestampEND = time.strftime(”%H%M%S”) + ’-’ + time.strftime(”%d%m%Y”)

weight name = ’./models/weights-’ + timestampEND +’.h5’

Hyper-parameters.

epochs = args[’epochs’]

batch size = args[’batch size’]

learning rate = args[’learning rate’]

optimizer = args[’optimizer’]

lr decay = args[’lr decay’]

dropout = args[’dropout’]

layer1 = args[’layer1’]

86

layer2 = args[’layer2’]

layer3 = args[’layer3’]

horizontal flip = args[’horizontal flip’]

vertical flip = args[’vertical flip’]

rotation range = args[’rotation range’]

shear range = args[’shear range’]

zoom range = args[’zoom range’]

is search = args[’search’]

if optimizer == ”ADAM”:

optimizer type = Adam

if optimizer == ”SGD”:

optimizer type = SGD

iteration = 0

average f1 = 0.0

for types in magnification list:

if iteration == 0:

load wt = ”Yes”

else:

load wt = ”No”

Load data.

training images, training labels,

validation images, validation labels,

testing images, testing labels =

data split(magnification = types, validation percent = 0.1, testing percent = 0.2)

Image augmentation.

datagen = ImageDataGenerator(

rotation range=rotation range,

87

shear range=shear range,

zoom range=zoom range,

horizontal flip=horizontal flip,

vertical flip=vertical flip,

)

datagen.fit(training images)

Build the model.

for i in range(len(models)):

if models[i]. name == model name:

base model = models[i]

base model = base model(image height=image height,image width

=image width,n channels=n channels,load wt=load wt)

Add additional layers for classification.

x = base model.output

x = Dense(2048, activation = ’relu’)(x)

x = Dropout(dropout)(x)

if layer1 >0:

x = Dense(layer1, activation = ’relu’)(x)

x = Dropout(dropout)(x)

if layer2 >0:

x = Dense(layer2, activation = ’relu’)(x)

x = Dropout(dropout)(x)

if layer3 >0:

x = Dense(layer3, activation = ’relu’)(x)

out = Dense(8, activation = ’softmax’)(x)

inp = base model.input

model = Model(inp, out)

88

Load model weight.

try:

model.load weights(weight name)

print(’Weights loaded!’)

except:

print(’No weights defined!’)

pass

Get the timestamp and set it as model name.

model timestamp = time.strftime(”%H%M%S”) + ’-’ + time.strftime(”%d%m%Y”)

saved model name = ’./models/-.hdf5’.format(types, model timestamp)

model.compile(

loss=”categorical crossentropy”,

optimizer=optimizer type(lr=learning rate),

metrics=[f1,’accuracy’])

early stopping = EarlyStopping(patience=10, verbose=2)

model checkpoint = ModelCheckpoint(saved model name, save best only=True, ver-

bose=2)

reduce lr = ReduceLROnPlateau(factor=lr decay, patience=5, verbose=2)

history = model.fit generator(

datagen.flow(training images, training labels, batch size=batch size),

steps per epoch=len(training images)/ batch size, validation data=[validation images,

validation labels],

callbacks=[early stopping, model checkpoint, reduce lr, SendMetrics()], epochs=epochs)

Load the best model.

model = keras.models.load model(saved model name, custom objects=’f1’: f1)

Get the final validation metrics at last step.

val loss, val f1, val acc = model.evaluate(validation images, validation labels)

89

model.save weights(weight name)

print(”The validation metrics at last step: ”)

print(”The validation accuracy for ” + model name + ” with magnification ”+ types +”

is ”, val acc, ” with F1 score of ”, val f1, ”

n”)

print()

Get the average val f1 score.

average f1 += val f1 / 4.0

Print the metrics.

if not is search:

Print the training metrics.

train logits = model.predict(training images)

train pred = np.argmax(train logits, axis=1)

train true = np.argmax(training labels, axis=1)

print(”=”*15 + ” Training metrics ”.format(types) + ”=”*15)

print metrics(train true, train pred)

Print the validation metrics.

val logits = model.predict(validation images)

val pred = np.argmax(val logits, axis=1)

val true = np.argmax(validation labels, axis=1)

print(”=”*15 + ” Valiation metrics ”.format(types) + ”=”*15)

print metrics(val true, val pred)

Print the test metrics.

test logits = model.predict(testing images)

test pred = np.argmax(test logits, axis=1)

test true = np.argmax(testing labels, axis=1)

print(”=”*15 + ” Test metrics ”.format(types) + ”=”*15)

90

print metrics(test true, test pred)

Destory the useless model.

iteration += 1

del model

keras.backend.clear session()

report final result

nni.report final result(average f1)

if is search:

Delete all temp models.

shutil.rmtree(’./models/’)

def get params():

Training settings

parser = argparse.ArgumentParser(description=’BreakHist’)

For model architecture.

parser.add argument(”–layer1”, type=int, default=2048)

parser.add argument(”–layer2”, type=int, default=512)

parser.add argument(”–layer3”, type=int, default=32)

parser.add argument(”–dropout”, type=float, default=0.3)

For training hyper-parameters.

parser.add argument(’–batch size’, type=int, default=64)

parser.add argument(’–learning rate’, type=float, default=0.001)

parser.add argument(’–lr decay’, type=float, default=0.1)

parser.add argument(’–optimizer’, type=str, default=”ADAM”)

parser.add argument(’–epochs’, type=int, default=30)

For data augmentation.

parser.add argument(’–horizontal flip’, type=bool, default=False)

parser.add argument(’–vertical flip’, type=bool, default=False)

91

parser.add argument(’–rotation range’, type=float, default=0.0)

parser.add argument(’–shear range’, type=float, default=0)

parser.add argument(’–zoom range’, type=float, default=0)

Identify the phase: train or search.

parser.add argument(’–search’, type=bool, default=False)

args, = parser.parse known args()

return args

if name == ’ main ’:

try:

get parameters form tuner

tuner params = nni.get next parameter()

params = vars(get params())

params.update(tuner params)

main(params)

except Exception as exception:

logger.exception(exception)

raise

92

APPENDIX C

PROPOSED METHOD SOURCE CODE

import os

os.environ[’TF CPP MIN LOG LEVEL’] = ’3’

os.environ[”CUDA VISIBLE DEVICES”] = ”1”

import nni

import numpy as np

import pandas as pd

import random

import matplotlib.pyplot as plt

import matplotlib.image as mpimg

from skimage.transform import resize

from models import *

from data processing import data split

from training fn import *

import keras

from keras.layers import *

from keras.models import *

from keras import layers

from keras.utils.data utils import get file

from keras import backend as K

from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau

from keras.optimizers import Adam, SGD

from keras.preprocessing.image import ImageDataGenerator

from sklearn.linear model import LogisticRegression

93

from sklearn.svm import SVC

from sklearn.feature selection import SelectFromModel

from sklearn.model selection import cross validate

from sklearn.metrics import accuracy score, f1 score, roc auc score

import time

import logging

import argparse

import shutil

import tensorflow as tf

import keras.backend.tensorflow backend as KTF

logger = logging.getLogger(’BreakHist’)

class SendMetrics(keras.callbacks.Callback):

def on epoch end(self, epoch, logs=):

nni.report intermediate result(logs[”f1”])

seed value = 42

os.environ[’PYTHONHASHSEED’]=str(seed value)

np.random.seed(seed value)

random.seed(seed value)

tf.random.set random seed(seed value)

config = tf.ConfigProto()

config.gpu options.allow growth=True

session = tf.Session(config=config)

KTF.set session(session)

Name list and magnification list.

magnification list = [’40X’, ’100X’, ’200X’, ’400X’]

benign list = [’adenosis’, ’fibroadenoma’, ’phyllodes tumor’, ’tubular adenoma’]

94

malignant list = [’ductal carcinoma’, ’lobular carcinoma’, ’mucinous carcinoma’, ’pap-

illary carcinoma’]

cancer list = benign list + malignant list

Model list.

models = [vgg16 model, vgg19 model, xception model, resnet model, inception model,

inception resnet model]

model num = 3 # Select resnet as the backbone.

model name = models[model num]. name

Set image size.

image height=115

image width=175

n channels=3

def main(args):

Creater model dir.

if not os.path.exists(”./models/”):

os.makedirs(”./models/”)

Get the timestamp and set it as weight name.

timestampEND = time.strftime(”%H%M%S”) + ’-’ + time.strftime(”%d%m%Y”)

weight name = ’./models/weights-’ + timestampEND +’.h5’

Hyper-parameters.

epochs = args[’epochs’]

batch size = args[’batch size’]

learning rate = args[’learning rate’]

optimizer = args[’optimizer’]

lr decay = args[’lr decay’]

dropout = args[’dropout’]

layer1 = args[’layer1’]

95

layer2 = args[’layer2’]

layer3 = args[’layer3’]

horizontal flip = args[’horizontal flip’]

vertical flip = args[’vertical flip’]

rotation range = args[’rotation range’]

shear range = args[’shear range’]

zoom range = args[’zoom range’]

is search = args[’search’]

if optimizer == ”ADAM”:

optimizer type = Adam

if optimizer == ”SGD”:

optimizer type = SGD

iteration = 0

average f1 = 0.0

for types in magnification list:

if iteration == 0:

load wt = ”Yes”

else:

load wt = ”No”

Load data.

training images, training labels,

validation images, validation labels,

testing images, testing labels =

data split(magnification = types, validation percent = 0.1, testing percent = 0.2)

Image augmentation.

datagen = ImageDataGenerator(

rotation range=rotation range,

96

shear range=shear range,

zoom range=zoom range,

horizontal flip=horizontal flip,

vertical flip=vertical flip,

)

datagen.fit(training images)

Build the model.

for i in range(len(models)):

if models[i]. name == model name:

base model = models[i]

base model = base model(image height=image height,image width

=image width,n channels=n channels,load wt=load wt)

Add additional layers for classification.

x = base model.output

x = Dense(2048, activation = ’relu’)(x)

x = Dropout(dropout)(x)

if layer1 >0:

x = Dense(layer1, activation = ’relu’)(x)

x = Dropout(dropout)(x)

if layer2 >0:

x = Dense(layer2, activation = ’relu’)(x)

x = Dropout(dropout)(x)

if layer3 >0:

x = Dense(layer3, activation = ’relu’)(x)

out = Dense(8, activation = ’softmax’)(x)

inp = base model.input

model = Model(inp, out)

97

Load model weight.

try:

model.load weights(weight name)

print(’Weights loaded!’)

except:

print(’No weights defined!’)

pass

Get the timestamp and set it as model name.

model timestamp = time.strftime(”%H%M%S”) + ’-’ + time.strftime(”%d%m%Y”)

saved model name = ’./models/-.hdf5’.format(types, model timestamp)

model.compile(

loss=”categorical crossentropy”,

optimizer=optimizer type(lr=learning rate),

metrics=[f1,’accuracy’])

early stopping = EarlyStopping(patience=10, verbose=2)

model checkpoint = ModelCheckpoint(saved model name, save best only=True, ver-

bose=2)

reduce lr = ReduceLROnPlateau(factor=lr decay, patience=5, verbose=2)

history = model.fit generator(

datagen.flow(training images, training labels, batch size=batch size),

steps per epoch=len(training images) / batch size,

validation data=[validation images, validation labels],

callbacks=[early stopping, model checkpoint, reduce lr, SendMetrics()],

epochs=epochs)

Load the best model.

model = keras.models.load model(saved model name, custom objects=’f1’: f1)

Get the final validation metrics at last step.

98

val loss, val f1, val acc = model.evaluate(validation images, validation labels)

model.save weights(weight name)

print(”The validation metrics at last step: ”)

print(”The validation accuracy for ” + model name + ” with magnification ”+ types +”

is ”, val acc, ” with F1 score of ”, val f1, ”

n”)

print()

Get the average val f1 score.

average f1 += val f1 / 4.0

Print the metrics.

if not is search:

Print the training metrics.

train logits = model.predict(training images)

train pred = np.argmax(train logits, axis=1)

train true = np.argmax(training labels, axis=1)

print(”=”*15 + ” Training metrics ”.format(types) + ”=”*15)

print metrics(train true, train pred)

Print the validation metrics.

val logits = model.predict(validation images)

val pred = np.argmax(val logits, axis=1)

val true = np.argmax(validation labels, axis=1)

print(”=”*15 + ” Valiation metrics ”.format(types) + ”=”*15)

print metrics(val true, val pred)

Print the test metrics.

test logits = model.predict(testing images)

test pred = np.argmax(test logits, axis=1)

test true = np.argmax(testing labels, axis=1)

99

print(”=”*15 + ” Test metrics ”.format(types) + ”=”*15)

print metrics(test true, test pred)

Destory the useless model.

iteration += 1

del model

keras.backend.clear session()

report final result

nni.report final result(average f1)

if is search:

Delete all temp models.

shutil.rmtree(’./models/’)

def get params():

Training settings

parser = argparse.ArgumentParser(description=’BreakHist’)

For model architecture.

parser.add argument(”–layer1”, type=int, default=64)

parser.add argument(”–layer2”, type=int, default=0)

parser.add argument(”–layer3”, type=int, default=64)

parser.add argument(”–dropout”, type=float, default=0.10887510008284884)

For training hyper-parameters.

parser.add argument(’–batch size’, type=int, default=16)

parser.add argument(’–learning rate’, type=float, default=0.0001)

parser.add argument(’–lr decay’, type=float, default=0.5)

parser.add argument(’–optimizer’, type=str, default=”ADAM”)

parser.add argument(’–epochs’, type=int, default=30)

For data augmentation.

parser.add argument(’–horizontal flip’, type=bool, default=False)

100

parser.add argument(’–vertical flip’, type=bool, default=True)

parser.add argument(’–rotation range’, type=float, default=20)

parser.add argument(’–shear range’, type=float, default=0.06663526112980617)

parser.add argument(’–zoom range’, type=float, default=0.48854077282376673)

Identify the phase: train or search.

parser.add argument(’–search’, type=bool, default=False)

args, = parser.parse known args()

return args

if name == ’ main ’:

try:

get parameters form tuner

tuner params = nni.get next parameter()

params = vars(get params())

params.update(tuner params)

main(params)

except Exception as exception:

logger.exception(exception)

raise

101

APPENDIX D

SEARCH SOURCE CODE

import os

os.environ[’TF CPP MIN LOG LEVEL’] = ’3’

os.environ[”CUDA VISIBLE DEVICES”] = ”1”

import nni

import numpy as np

import pandas as pd

import random

import matplotlib.pyplot as plt

import matplotlib.image as mpimg

from skimage.transform import resize

from models import *

from data processing import data split

from training fn import *

import keras

from keras.layers import *

from keras.models import *

from keras import layers

from keras.utils.data utils import get file

from keras import backend as K

from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau

from keras.optimizers import Adam, SGD

from keras.preprocessing.image import ImageDataGenerator

from sklearn.linear model import LogisticRegression

102

from sklearn.svm import SVC

from sklearn.feature selection import SelectFromModel

from sklearn.model selection import cross validate

from sklearn.metrics import accuracy score, f1 score, roc auc score

import time

import logging

import argparse

import shutil

import tensorflow as tf

import keras.backend.tensorflow backend as KTF

logger = logging.getLogger(’BreakHist’)

class SendMetrics(keras.callbacks.Callback):

def on epoch end(self, epoch, logs=):

nni.report intermediate result(logs[”f1”])

seed value = 42

os.environ[’PYTHONHASHSEED’]=str(seed value)

np.random.seed(seed value)

random.seed(seed value)

tf.random.set random seed(seed value)

config = tf.ConfigProto()

config.gpu options.allow growth=True

session = tf.Session(config=config)

KTF.set session(session)

Name list and magnification list.

magnification list = [’40X’, ’100X’, ’200X’, ’400X’]

benign list = [’adenosis’, ’fibroadenoma’, ’phyllodes tumor’, ’tubular adenoma’]

103

malignant list = [’ductal carcinoma’, ’lobular carcinoma’, ’mucinous carcinoma’, ’pap-

illary carcinoma’]

cancer list = benign list + malignant list

Model list.

models = [vgg16 model, vgg19 model, xception model, resnet model, inception model,

inception resnet model]

model num = 3 # Select resnet as the backbone.

model name = models[model num]. name

Set image size.

image height=115

image width=175

n channels=3

def main(args):

Creater model dir.

if not os.path.exists(”./models/”):

os.makedirs(”./models/”)

Get the timestamp and set it as weight name.

timestampEND = time.strftime(”%H%M%S”) + ’-’ + time.strftime(”%d%m%Y”)

weight name = ’./models/weights-’ + timestampEND +’.h5’

Hyper-parameters.

epochs = args[’epochs’]

batch size = args[’batch size’]

learning rate = args[’learning rate’]

optimizer = args[’optimizer’]

lr decay = args[’lr decay’]

dropout = args[’dropout’]

layer1 = args[’layer1’]

104

layer2 = args[’layer2’]

layer3 = args[’layer3’]

horizontal flip = args[’horizontal flip’]

vertical flip = args[’vertical flip’]

rotation range = args[’rotation range’]

shear range = args[’shear range’]

zoom range = args[’zoom range’]

is search = args[’search’]

if optimizer == ”ADAM”:

optimizer type = Adam

if optimizer == ”SGD”:

optimizer type = SGD

iteration = 0

average f1 = 0.0

for types in magnification list:

if iteration == 0:

load wt = ”Yes”

else:

load wt = ”No”

Load data.

training images, training labels, validation images, validation labels, testing images,

testing labels =

data split(magnification = types, validation percent = 0.1, testing percent = 0.2)

I

mage augmentation.

datagen = ImageDataGenerator(

rotation range=rotation range,

105

shear range=shear range,

zoom range=zoom range,

horizontal flip=horizontal flip,

vertical flip=vertical flip,

)

datagen.fit(training images)

Build the model.

for i in range(len(models)):

if models[i]. name == model name:

base model = models[i]

base model = base model(image height=image height,image width

=image width,n channels=n channels,load wt=load wt)

Add additional layers for classification.

x = base model.output

x = Dense(2048, activation = ’relu’)(x)

x = Dropout(dropout)(x)

if layer1 >0:

x = Dense(layer1, activation = ’relu’)(x)

x = Dropout(dropout)(x)

if layer2 >0:

x = Dense(layer2, activation = ’relu’)(x)

x = Dropout(dropout)(x)

if layer3 >0:

x = Dense(layer3, activation = ’relu’)(x)

out = Dense(8, activation = ’softmax’)(x)

inp = base model.input

model = Model(inp, out)

106

Load model weight.

try:

model.load weights(weight name)

print(’Weights loaded!’)

except:

print(’No weights defined!’)

pass

Get the timestamp and set it as model name.

model timestamp = time.strftime(”%H%M%S”) + ’-’ + time.strftime(”%d%m%Y”)

saved model name = ’./models/-.hdf5’.format(types, model timestamp)

model.compile(

loss=”categorical crossentropy”,

optimizer=optimizer type(lr=learning rate),

metrics=[f1,’accuracy’])

early stopping = EarlyStopping(patience=10, verbose=2)

model checkpoint = ModelCheckpoint(saved model name, save best only=True, ver-

bose=2)

reduce lr = ReduceLROnPlateau(factor=lr decay, patience=5, verbose=2)

history = model.fit generator(

datagen.flow(training images, training labels, batch size=batch size),

steps per epoch=len(training images) / batch size,

validation data=[validation images, validation labels],

callbacks=[early stopping, model checkpoint, reduce lr, SendMetrics()],

epochs=epochs)

Load the best model.

model = keras.models.load model(saved model name, custom objects=’f1’: f1)

Get the final validation metrics at last step.

107

val loss, val f1, val acc = model.evaluate(validation images,

validation labels) model.save weights(weight name)

print(”The validation metrics at last step: ”)

print(”The validation accuracy for ” + model name + ” with magnification ”+ types +”

is ”, val acc, ” with F1 score of ”, val f1, ”

n”)

print()

Get the average val f1 score.

average f1 += val f1 / 4.0

Print the metrics.

if not is search:

Print the training metrics.

train logits = model.predict(training images)

train pred = np.argmax(train logits, axis=1)

train true = np.argmax(training labels, axis=1)

print(”=”*15 + ” Training metrics ”.format(types) + ”=”*15)

print metrics(train true, train pred)

Print the validation metrics.

val logits = model.predict(validation images)

val pred = np.argmax(val logits, axis=1)

val true = np.argmax(validation labels, axis=1)

print(”=”*15 + ” Valiation metrics ”.format(types) + ”=”*15)

print metrics(val true, val pred)

Print the test metrics.

test logits = model.predict(testing images)

test pred = np.argmax(test logits, axis=1)

test true = np.argmax(testing labels, axis=1)

108

print(”=”*15 + ” Test metrics ”.format(types) + ”=”*15)

print metrics(test true, test pred)

Destory the useless model.

iteration += 1

del model

keras.backend.clear session()

report final result

nni.report final result(average f1)

if is search:

Delete all temp models.

shutil.rmtree(’./models/’)

def

get params():

Training settings

parser = argparse.ArgumentParser(description=’BreakHist’)

For model architecture.

parser.add argument(”–layer1”, type=int, default=0)

parser.add argument(”–layer2”, type=int, default=0)

parser.add argument(”–layer3”, type=int, default=0)

parser.add argument(”–dropout”, type=float, default=0.3)

For training hyper-parameters.

parser.add argument(’–batch size’, type=int, default=32)

parser.add argument(’–learning rate’, type=float, default=0.0001)

parser.add argument(’–lr decay’, type=float, default=0.1)

parser.add argument(’–optimizer’, type=str, default=”ADAM”)

parser.add argument(’–epochs’, type=int, default=30)

For data augmentation.

109

parser.add argument(’–horizontal flip’, type=bool,

default=False)

parser.add argument(’–vertical flip’, type=bool, default=False)

parser.add argument(’–rotation range’, type=float, default=0.0)

parser.add argument(’–shear range’, type=float, default=0)

parser.add argument(’–zoom range’, type=float, default=0)

Identify the phase: train or search.

parser.add argument(’–search’, type=bool, default=True)

args, = parser.parse known args()

return args

if name == ’ main ’:

try:

get parameters form tuner

tuner params = nni.get next parameter()

params = vars(get params())

params.update(tuner params)

main(params)

except Exception as exception:

logger.exception(exception)

raise

110

APPENDIX E

EVLATION CODE

import numpy as np

import pandas as pd

import random

import os

import matplotlib.pyplot as plt

import matplotlib.image as mpimg

from skimage.transform import resize

from keras.layers import *

from keras.models import *

from keras import layers

from keras.utils.data utils import get file

from keras import backend as K

from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau

from keras.optimizers import Adam

from sklearn.linear model import LogisticRegression

from sklearn.svm import SVC

from sklearn.feature selection import SelectFromModel

from sklearn.model selection import cross validate

from sklearn.metrics import accuracy score, f1 score, roc auc score, confusion matrix

from data processing import data split

from models import *

import tensorflow as tf

seed value = 42

111

os.environ[’PYTHONHASHSEED’]=str(seed value)

np.random.seed(seed value)

random.seed(seed value)

tf.random.set random seed(seed value)

models = [vgg16 model, vgg19 model, xception model, resnet model, inception model,

inception resnet model]

def counts from confusion(confusion):

”””

Obtain TP, FN FP, and TN for each class in the confusion matrix

”””

counts list = []

Iterate through classes and store the counts

for i in range(confusion.shape[0]):

tp = confusion[i, i]

fn mask = np.zeros(confusion.shape)

fn mask[i, :] = 1

fn mask[i, i] = 0

fn = np.sum(np.multiply(confusion, fn mask))

fp mask = np.zeros(confusion.shape)

fp mask[:, i] = 1

fp mask[i, i] = 0

fp = np.sum(np.multiply(confusion, fp mask))

tn mask = 1 - (fn mask + fp mask)

tn mask[i, i] = 0

tn = np.sum(np.multiply(confusion, tn mask))

counts list.append(’Class’: i,

’TP’: tp,

112

’FN’: fn,

’FP’: fp,

’TN’: tn)

return counts list

def

print metrics(y ture, y pred):

cm = confusion matrix(y ture, y pred).astype(’float’)

results = counts from confusion(cm)

Get the metrics.

met = []

acc avg, precision avg, recall avg, f1 avg, sen avg, spe avg, cc avg = 0, 0, 0, 0, 0, 0, 0

for stat in results:

acc = (stat[’TP’] + stat[’TN’]) / (stat[’TP’] + stat[’TN’] + stat[’FP’] + stat[’FN’])

precision = stat[’TP’] / (stat[’TP’] + stat[’FP’])

recall = stat[’TP’] / (stat[’TP’] + stat[’FN’])

f1 score = 2 * precision * recall / (precision + recall)

sensitivity = stat[’TP’] / (stat[’TP’]+stat[’FN’])

specificity = stat[’TN’] / (stat[’TN’]+stat[’FP’])

cc = ((stat[’TP’]*stat[’TN’]) - (stat[’FN’]*stat[’FP’]))/

((stat[’TP’]+stat[’FN’])*(stat[’TN’]+stat[’FP’])*

(stat[’TP’]+stat[’FP’])*(stat[’TN’]+stat[’FN’]))**0.5

acc avg += acc*1.0/len(results)

precision avg += precision*1.0/len(results)

recall avg += recall*1.0/len(results)

f1 avg += f1 score*1.0/len(results)

sen avg += sensitivity*1.0/len(results)

spe avg += specificity*1.0/len(results)

113

cc avg += cc*1.0/len(results)

met.append(

’Class’: stat[’Class’],

’acc’: acc,

’precision’: precision,

’recall’: recall,

’f1 score’: f1 score,

’sensitivity’: sensitivity,

’specificity’: specificity,

’cc’: cc,

)

Print the metrics.

print()

print(’0. Confusion matrix: ’)

print(cm)

print()

print (’1. Accuracy mean ’, acc avg)

for i in range (0, len(met)):

print (met[i][’Class’], ’ ’, met[i][’acc’])

print()

print (’2. F1 score mean ’, f1 avg)

for i in range (0, len(met)):

print (met[i][’Class’], ’ ’, met[i][’f1 score’])

print()

print (’3. precision score mean ’, precision avg)

for i in range (0, len(met)):

print (met[i][’Class’], ’ ’, met[i][’precision’])

114

print()

print (’4. recall score mean ’, recall avg)

for i in range (0, len(met)):

print (met[i][’Class’], ’ ’, met[i][’recall’])

print()

print (’5. sensitivities score mean ’, sen avg)

for i in range (0, len(met)):

print (met[i][’Class’], ’ ’, met[i][’sensitivity’])

print()

print (’6. specificity score mean ’, spe avg)

for i in range (0, len(met)):

print (met[i][’Class’], ’ ’, met[i][’specificity’])

print()

print (’7. correlation coefficient mean ’, cc avg)

for i in range (0, len(met)):

print (met[i][’Class’], ’ ’, met[i][’cc’])

print()

def f1(y true, y pred):

def recall(y true, y pred):

true positives = K.sum(K.round(K.clip(y true * y pred, 0, 1)))

possible positives = K.sum(K.round(K.clip(y true, 0, 1)))

recall = true positives / (possible positives + K.epsilon())

return recall

def precision(y true, y pred):

true positives = K.sum(K.round(K.clip(y true * y pred, 0, 1)))

predicted positives = K.sum(K.round(K.clip(y pred, 0, 1)))

precision = true positives / (predicted positives + K.epsilon())

115

return precision

precision = precision(y true, y pred)

recall = recall(y true, y pred)

return 2*((precision*recall)/(precision+recall+K.epsilon()))

def compile n fit(validation percent, testing percent,

image height, image width, n channels, load wt,dropout =

0.3, model name = ’vgg16 model’, magnification = ’40X’):

Load data.

training images, training labels, validation images,

validation labels, testing images, testing labels =

data split(magnification = magnification, validation percent = validation percent,

testing percent = testing percent)

for i in range(len(models)):

if models[i]. name == model name:

base model = models[i]

base model = base model(image height=image height,image width

=image width,n channels=n channels,load wt=load wt)

x = base model.output

x = Dense(2048, activation = ’relu’)(x)

x = Dropout(dropout)(x)

x = Dense(512, activation = ’relu’)(x)

x = Dropout(dropout)(x)

x = Dense(128, activation = ’relu’)(x)

x = Dropout(dropout)(x)

x = Dense(32, activation = ’relu’)(x)

out = Dense(8, activation = ’softmax’)(x)

inp = base model.input

116

model = Model(inp,out)

try:

model.load weights(model name + ’ weight 1.h5’)

print(’Weights loaded!’)

except:

print(’No weights defined!’)

pass

model.compile(loss=”categorical crossentropy”,

optimizer=Adam(lr=0.0001), metrics=[f1,’accuracy’])

early stopping = EarlyStopping(patience=10, verbose=2)

model checkpoint = ModelCheckpoint(model name + ” combine” +”.model”, save best only=True,

verbose=2)

reduce lr = ReduceLROnPlateau(factor=0.1, patience=5, verbose=2) #min lr=0.00001,

epochs = 100

batch size = 64

history = model.fit(training images, training labels, validation data=[validation images,

validation labels],

epochs=epochs,

verbose = 0,

batch size=batch size,

callbacks=[early stopping,

model checkpoint, reduce lr])

test loss, test acc, test f1 = model.evaluate(testing images, testing labels)

model.save weights(model name + ’ weight 1.h5’)

print(”

nThe test accuracy for ” + model name + ” with magnification ”+ magnification +” is ”,

test acc, ” with F1 score of ”, test f1, ”

117

n”)

118

REFERENCES

[1] R. Guan, X. Wang, M. Q. Yang, Y. Zhang, F. Zhou, C. Yang, and Y. Liang, “Multi-
label deep learning for gene function annotation in cancer pathways,” Scientific re-
ports, vol. 8, no. 1, pp. 1–9, 2018.

[2] D. Hanahan, “Rethinking the war on cancer,” The Lancet, vol. 383, no. 9916, pp. 558–
563, 2014.

[3] M. DeBonis, “Congress passes 21st century cures act, boosting research and easing
drug approvals,” The Washington Post, 2016.

[4] J. Biden, Inspiring a new generation to defy the bounds of innovation: A moonshot
to cure cancer, 2016.

[5] D. Howe, M. Costanzo, P. Fey, T. Gojobori, L. Hannick, W. Hide, D. P. Hill, R.
Kania, M. Schaeffer, S. St Pierre, et al., “The future of biocuration,” Nature, vol. 455,
no. 7209, pp. 47–50, 2008.

[6] C. for Disease Control, Prevention, et al., “United states cancer statistics: Data vi-
sualizations,” Changes Over Time: Colon and Rectum. Available online: https://gis.
cdc. gov/Cancer/USCS/DataViz. html (accessed on 21 November 2019), 2018.

[7] C. E. DeSantis, J. Ma, M. M. Gaudet, L. A. Newman, K. D. Miller, A. Goding Sauer,
A. Jemal, and R. L. Siegel, “Breast cancer statistics, 2019,” CA: a cancer journal for
clinicians, vol. 69, no. 6, pp. 438–451, 2019.

[8] P. Boyle, B. Levin, et al., World cancer report 2008. IARC Press, International
Agency for Research on Cancer, 2008.

[9] J. V. Lacey, A. R. Kreimer, S. S. Buys, P. M. Marcus, S.-C. Chang, M. F. Leitzmann,
R. N. Hoover, P. C. Prorok, C. D. Berg, P. Hartge, et al., “Breast cancer epidemiology
according to recognized breast cancer risk factors in the prostate, lung, colorectal and
ovarian (plco) cancer screening trial cohort,” BMC cancer, vol. 9, no. 1, p. 84, 2009.

[10] B. O. Anderson, C.-H. Yip, R. A. Smith, R. Shyyan, S. F. Sener, A. Eniu, R. W. Carl-
son, E. Azavedo, and J. Harford, “Guideline implementation for breast healthcare in
low-income and middle-income countries: Overview of the breast health global ini-
tiative global summit 2007,” Cancer, vol. 113, no. S8, pp. 2221–2243, 2008.

[11] Health and its significance.

[12] W. M. Wells III, Medical image analysis–past, present, and future, 2016.

119

[13] A. Madabhushi and G. Lee, Image analysis and machine learning in digital pathol-
ogy: Challenges and opportunities, 2016.

[14] D. Shen, G. Wu, and H.-I. Suk, “Deep learning in medical image analysis,” Annual
review of biomedical engineering, vol. 19, pp. 221–248, 2017.

[15] H. Greenspan, B. Van Ginneken, and R. M. Summers, “Guest editorial deep learning
in medical imaging: Overview and future promise of an exciting new technique,”
IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1153–1159, 2016.

[16] J. Weese and C. Lorenz, Four challenges in medical image analysis from an indus-
trial perspective, 2016.

[17] D. Rueckert, B. Glocker, and B. Kainz, Learning clinically useful information from
images: Past, present and future, 2016.

[18] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A.
Van Der Laak, B. Van Ginneken, and C. I. Sánchez, “A survey on deep learning in
medical image analysis,” Medical image analysis, vol. 42, pp. 60–88, 2017.

[19] PubMed, Us national library of medicine national institutes of health, 2019.

[20] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected
convolutional networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 4700–4708.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing sys-
tems, 2012, pp. 1097–1105.

[22] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.

[23] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[24] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,”
in European conference on computer vision, Springer, 2014, pp. 818–833.

[25] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

120

[26] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the in-
ception architecture for computer vision,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 2818–2826.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[28] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-
resnet and the impact of residual connections on learning,” in Thirty-first AAAI con-
ference on artificial intelligence, 2017.

[29] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in
Proceedings of the IEEE conference on computer vision and pattern recognition,
2017, pp. 1251–1258.

[30] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architectures
for scalable image recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 8697–8710.

[31] M. L. GIGER, “Computer-aided diagnosis in mammography,” Handbook of medical
imaging, 2000.

[32] S. Astley and F. J. Gilbert, “Computer-aided detection in mammography,” Clinical
radiology, vol. 59, no. 5, pp. 390–399, 2004.

[33] T. W. Freer and M. J. Ulissey, “Screening mammography with computer-aided detec-
tion: Prospective study of 12,860 patients in a community breast center,” Radiology,
vol. 220, no. 3, pp. 781–786, 2001.

[34] M. Giger, “Overview of computer-aided diagnosis in breast imaging,” Comput.-
Aided Diagnosis in Medical Imaging, pp. 167–176, 1998.

[35] S. Kumar, R. Moni, and J. Rajeesh, “Automatic liver and lesion segmentation: A
primary step in diagnosis of liver diseases,” Signal, Image and Video Processing,
vol. 7, no. 1, pp. 163–172, 2013.

[36] ——, “An automatic computer-aided diagnosis system for liver tumours on com-
puted tomography images,” Computers & Electrical Engineering, vol. 39, no. 5,
pp. 1516–1526, 2013.

[37] J. Vincey and M. Jeba, “Computer aided diagnosis for liver cancer feature extrac-
tion,” Int J Eng Sci, vol. 11, pp. 27–30, 2013.

121

[38] J. Stoitsis, I. Valavanis, S. G. Mougiakakou, S. Golemati, A. Nikita, and K. S. Nikita,
“Computer aided diagnosis based on medical image processing and artificial intelli-
gence methods,” Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 569, no. 2,
pp. 591–595, 2006.

[39] S. Pereira, A. Pinto, V. Alves, and C. A. Silva, “Brain tumor segmentation using con-
volutional neural networks in mri images,” IEEE transactions on medical imaging,
vol. 35, no. 5, pp. 1240–1251, 2016.

[40] M. F. Keskenler and E. F. Keskenler, “Geçmişten günümüze yapay sinir ağları ve
tarihçesi,” Takvim-i Vekayi, vol. 5, no. 2, pp. 8–18, 2017.

[41] N. S. Ismail and C. Sovuthy, “Breast cancer detection based on deep learning,”

[42] N. Bayramoglu, J. Kannala, and J. Heikkilä, “Deep learning for magnification in-
dependent breast cancer histopathology image classification,” in 2016 23rd Interna-
tional conference on pattern recognition (ICPR), IEEE, 2016, pp. 2440–2445.

[43] T. Araújo, G. Aresta, E. Castro, J. Rouco, P. Aguiar, C. Eloy, A. Polónia, and A.
Campilho, “Classification of breast cancer histology images using convolutional
neural networks,” PloS one, vol. 12, no. 6, e0177544, 2017.

[44] J. Chang, J. Yu, T. Han, H.-j. Chang, and E. Park, “A method for classifying medical
images using transfer learning: A pilot study on histopathology of breast cancer,”
in 2017 IEEE 19th International Conference on e-Health Networking, Applications
and Services (Healthcom), IEEE, 2017, pp. 1–4.

[45] M. Elter and E. Haßlmeyer, “A knowledge-based approach to cadx of mammo-
graphic masses,” in Medical Imaging 2008: Computer-Aided Diagnosis, Interna-
tional Society for Optics and Photonics, vol. 6915, 2008, p. 69150L.

[46] M. T. N. Uppal, “Classification of mammograms for breast cancer detection using
fusion of discrete cosine transform and discrete wavelet transform features.,” 2016.

[47] B. Sahiner, H.-P. Chan, N. Petrick, D. Wei, M. A. Helvie, D. D. Adler, and M. M.
Goodsitt, “Classification of mass and normal breast tissue: A convolution neural
network classifier with spatial domain and texture images,” IEEE transactions on
Medical Imaging, vol. 15, no. 5, pp. 598–610, 1996.

[48] K. Petersen, M. Nielsen, P. Diao, N. Karssemeijer, and M. Lillholm, “Breast tissue
segmentation and mammographic risk scoring using deep learning,” in International
workshop on digital mammography, Springer, 2014, pp. 88–94.

122

[49] A. R. Jamieson, K. Drukker, and M. L. Giger, “Breast image feature learning with
adaptive deconvolutional networks,” in Medical Imaging 2012: Computer-Aided Di-
agnosis, International Society for Optics and Photonics, vol. 8315, 2012, p. 831 506.

[50] A. Mert, N. Kılıç, E. Bilgili, and A. Akan, “Breast cancer detection with reduced
feature set,” Computational and mathematical methods in medicine, vol. 2015, 2015.

[51] M. H. Motlagh, M. Jannesari, H. Aboulkheyr, P. Khosravi, O. Elemento, M. To-
tonchi, and I. Hajirasouliha, “Breast cancer histopathological image classification:
A deep learning approach,” BioRxiv, p. 242 818, 2018.

[52] A. Titoriya and S. Sachdeva, “Breast cancer histopathology image classification us-
ing alexnet,” in 2019 4th International Conference on Information Systems and Com-
puter Networks (ISCON), IEEE, 2019, pp. 708–712.

[53] S. Singh, J. Harini, and B. Surabhi, “A novel neural network based automated system
for diagnosis of breast cancer from real time biopsy slides,” in International Con-
ference on Circuits, Communication, Control and Computing, IEEE, 2014, pp. 50–
53.

[54] Evolutionary algorithm.

[55] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le, and A. Ku-
rakin, “Large-scale evolution of image classifiers,” in Proceedings of the 34th Inter-
national Conference on Machine Learning-Volume 70, JMLR. org, 2017, pp. 2902–
2911.

[56] P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evolutionary algorithm that
constructs recurrent neural networks,” IEEE transactions on Neural Networks, vol. 5,
no. 1, pp. 54–65, 1994.

[57] Nni framework.

[58] F. Ritter, T. Boskamp, A. Homeyer, H. Laue, M. Schwier, F. Link, and H.-O. Peitgen,
“Medical image analysis,” IEEE pulse, vol. 2, no. 6, pp. 60–70, 2011.

[59] Y. H. Yoon and J. C. Ye, “Deep learning for accelerated ultrasound imaging,” in
2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2018, pp. 6673–6676.

[60] P. Sasmal, Y. Iwahori, M. Bhuyan, and K. Kasugai, “Classification of polyps in cap-
sule endoscopic images using cnn,” in 2018 IEEE Applied Signal Processing Con-
ference (ASPCON), IEEE, 2018, pp. 253–256.

123

[61] P. Cui, Z. Guo, J. Xu, T. Li, Y. Shi, W. Chen, T. Shu, and J. Lei, “Tissue recognition
in spinal endoscopic surgery using deep learning,” in 2019 IEEE 10th International
Conference on Awareness Science and Technology (iCAST), IEEE, 2019, pp. 1–5.

[62] A. KahsayGebreslassie, M. T. Hagos, et al., “Automated gastrointestinal disease
recognition for endoscopic images,” in 2019 International Conference on Comput-
ing, Communication, and Intelligent Systems (ICCCIS), IEEE, 2019, pp. 312–316.

[63] T. Treebupachatsakul and S. Poomrittigul, “Microorganism image recognition based
on deep learning application,” in 2020 International Conference on Electronics, In-
formation, and Communication (ICEIC), IEEE, 2020, pp. 1–5.

[64] Rectifier (neural networks).

124

	Deep Learning for Identifying Breast Cancer
	Recommended Citation

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	1 | Introduction and Background
	Introduction
	Significance of the Proposed Project
	Research Question
	Purpose of Study
	Audience
	Motivation
	Evaluation Plan
	Paper Goals

	2 | Literature Review
	Convolutional Neural Network (CNN) Based Methods Compare
	Computer-Aided Diagnosis (CAD)
	Breast Cancer Detect Method

	3 | Method
	ResNet-50
	Gentic Algorithm
	Datasets

	4 | Experiment and Analysis
	Data Pre-processing
	Experimental Environment
	Original ResNet-50
	Proposed Method
	Results
	Evaluation Metrics
	Discussion

	5 | Conclusion
	Appendices
	A | Main Source Code
	B | Original ResNet Source Code
	C | Proposed Method Source Code
	D | Search Source Code
	E | Evlation Code

	References

