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ABSTRACT 

 

On this planet the development of life requires six essential elements: C, H, O, N, 

P, and S. These elements are present in gaseous form, with the exception of phosphorus, 

which is primarily found in solid mineral sources. Phosphorus in biological systems is 

significant through its involvement in metabolic functions (e.g., Coenzyme A), cell 

structure (i.e., phospholipid membranes), and genetic storage/transfer (i.e., 

phosphodiester bonds in DNA and RNA). However, an ambiguity remains with the 

assimilation of phosphorus in biological systems, caused by its habitual presence in 

insoluble phosphate mineral sources. Recent research has found that insoluble phosphate 

minerals, when combined with urea-rich solvents, can release sequestered phosphate into 

solution and promote mineral transformation to more soluble secondary minerals.  

Our study investigates surface interactions of hydroxyapatite, a prebiotically 

plausible phosphate mineral source on the early Earth, with urea-rich solvents (urea, 

ammonium formate, and water, UAFW) and magnesium sulfate. Time-dependent 

infrared studies were conducted via polarization modulated – infrared reflection-

absorption spectroscopy (PM-IRRAS) to monitor structural changes of the mineral 

surface. Thin hydroxyapatite films were analyzed with scanning electron microscopy 

(SEM), energy-dispersive x-ray spectroscopy (EDX), and PM-IRRAS before and after 

reaction. Phosphate depletion was observed with PM-IRRAS and was supported by more 

established instrumentation including nuclear magnetic resonance spectroscopy (NMR) 

and energy dispersive x-ray spectroscopy (EDX). Film corrosion was observed by post-

reaction characterization, and ammonium formate was found to activate orthophosphate 

release into solution.   
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CHAPTER 1. INTRODUCTION 

 

“The beauty of a living thing is not the atoms that go into it, 

but the way those atoms are put together.” 

- Carl Sagan 

 

1.1 Origins of Life and Phosphorus 

  Of the eight planets located in the Milky Way galaxy, our home planet, a pale 

blue dot is the only one known to inhabit life.1 This pale blue dot formed more than 4.55 

billion years ago with life estimated to have originated 4.3 billion years ago.2,3 The 

history of the Earth can be broken down into four geological periods (eons): Hadean, 

Archean, Proterozoic, and Phanerozoic.4 The first period on the Earth is referred to as the 

Hadean (4.56-3.85 billion years ago), with water present on the surface by 4.3 billion 

years ago.3 Conditions during the Hadean were drastically different compared to modern 

day Earth. For example, there was a reducing atmosphere (limited oxygen), with gases 

consisting of methane (CH4), carbon dioxide (CO2), and smaller amounts of sulfur 

dioxide (SO2), sulfur oxide (SO), ammonia (NH3), and nitrogen (N2).
5-8 Additionally, the 

Hadean and early Archean had high temperatures as well as more hydrothermal vents and 

volcanoes than modern Earth. Evidence of these high temperatures come from 

komatiites, which are rocks that were mainly present on this high temperature 
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environment.9 The surface of the early Earth (represented in Fig. 1.1) was also largely 

composed of water and had few stable land masses.8, 10 With this environment in place, 

life arose and the process by which this occurred is unknown and under investigation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Miller-Urey experiment in 1952 propelled origins of life experimental 

research and made evident that biology is mainly a prolongation of chemistry.11-12 This 

experiment used an electric discharge to add energy to a system of prebiotically plausible 

gases that were available on the early Earth  including H2O, CH4, NH3, and H2. This 

experiment produced precursor molecules such as formaldehyde (CH2O) and hydrogen 

cyanide (HCN), which can form amino acids or nucleobases, as well as amino acids 

(aspartic acid, glycine, alpha-amino-butyric acid, L-alanine, and D-alanine). Since 1952 

this experiment has gone through numerous replications, with a protocol also developed 

Fig. 1.1 Artists rendering of the environment on the early Earth. 

Image credit: NASA 

 



3 
 

by Eric Parker et al. Parker used modern analytical methods to detect 23 amino acids in a 

racemic mixture for this experiment (e.g., L-valine, D-valine, and L-serine).13 

 Origin of life research may focus on the development of each macromolecule to 

form a protocell (i.e., nucleic acids, polypeptides, polysaccharides and lipids), but before 

this, it can be deconstructed into: a) prebiotic synthesis b) polymerization and c) 

catalysis.14 Prebiotic synthesis research focuses on the formation of prebiotic molecules 

in the form of monomers and subsequently oligomers. Reactions that have been highly 

studied include the formose reaction, the formation of sugar molecules from 

formaldehyde, and nucleobase formation through HCN polymerization.15-16 In this model, 

polymerization relates to the formation of biopolymers and formation of macromolecules 

(e.g., nucleic acids, lipids, proteins, and carbohydrates). Generally, polymerization 

reactions concentrate key monomeric molecules together through condensation reactions. 

Lastly, catalysis refers to the use of these polymers to catalyze reactions; examples of this 

include ribozymes as well as mineral surfaces.17, 18 

 One area in origin of life research that has not been significantly explored to date 

is the role that mineral surfaces may have played in the formation of prebiotic molecules 

and in prebiotic polymerization. Solid surfaces are known to catalyze many industrial 

reactions.19,20 Given this knowledge and the prevalence of aqueous-mineral interfaces on 

the early Earth, this is an important area of investigation. The work presented here 

focuses on the incorporation of the element phosphorus into biochemical molecules. 

While recent experiments suggest that phosphorylation occurs in urea-rich solutions in 

contact with phosphate minerals, many questions remain about how phosphorus is 

released from the mineral. The mechanism of the dissolution process and mineral 
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transformations that have been observed post-reaction are not well understood. 

Monitoring structural changes in the surface as the mineral dissolves may provide insight 

into these mechanisms. Moreover, developing a novel method for mineral surface 

analysis, supported by more established instrumental techniques, may have a wide range 

of applications.21,22 

1.2 Ubiquity and Biological Significance of Phosphorus  

 The pervasiveness of phosphorus in biological systems is evidence of its 

indispensable role in life. The biological significance of this element is illustrated by its 

presence in nucleic acids (i.e., DNA and RNA), structural components (i.e., cellular 

phospholipid membranes and apatite in bones), and metabolic molecules (e.g., coenzyme 

A, glucose-6-phosphate, and ATP). As noted above, the presence of phosphorus in living 

organisms is primarily as a phosphate group: orthophosphate (PO4
3-) or an 

organophosphate (i.e., PO4
3- bound to an organic molecule). Furthermore, its existence as 

an organophosphate may be subdivided into four categories: a) orthophosphate esters 

(e.g., sugar phosphates, DNA, RNA through C-O-P bonds), b) reactive organophosphate 

molecules (e.g., phosphocreatine through P-O-C bonds through carbonyl or vinyl 

groups), c) organic polyphosphates (e.g., ATP, coenzyme A, and NAD through P-O-P 

bonds), and d) reduced phosphorus (e.g., antibiotics through C-P bonds).14,23 In fact, 44% 

of metabolic biological molecules contain phosphorus.24 

Properties of the phosphate group (PO4
-) include its ability to form bonds (i.e., 

bridging formation, C-O-P linkage in DNA) while maintaining its charge.25,26 By 

maintaining its negative charge, phosphate aids in the stability of phospholipid 

membranes by enhancing a molecule’s solubility and preventing diffusion of cell 
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contents through amphiphilic membranes. Furthermore, this charge restricts hydrolysis or 

break down of bonds by water (oxygen acts as a nucleophile and seeks an electrophile, 

and phosphorus has a localized negative charge), making important biopolymers such as 

nucleic acids (i.e., DNA and RNA) more stable.26-28 

1.3 The Phosphate Problem 

 Despite the presence and significance of phosphate in biochemistry, there are 

several challenges regarding its initial incorporation into life. In origin of life research, 

this is known as the “phosphate problem.” In particular, the phosphorylation mechanism 

for the formation of the earliest organophosphate compounds is under investigation and 

there are three proposed models: a urea-catalyzed mechanism, an organocatalysis 

mechanism, and a phosphate-intermediate mechanism.29 In a urea-catalyzed reaction, 

urea is believed to act as a catalyst to form an intermediate comparable to a carbodiimide 

crosslinking.30,31 However, current research by Burcar et al. and work by Schoffstall et 

al., suggests that phosphorylation occurs mainly via organocatalysis with a urea-

catalyzed reaction having a minor role.22,32,33 Organocatalysis assumes hydrogen bonding 

between hydrogens in urea and the oxygen in phosphate. The oxygen from phosphate 

gets extracted leaving a metaphosphate, which is attacked by a nucleophile (the organic 

compound to be phosphorylated e.g., nucleosides such as thymidine and uridine) to 

produce an organophosphate.33 A phosphate intermediate pathway would also utilize 

urea, but a reactive phosphate intermediate forms. Despite numerous experiments, this 

reactive phosphate intermediate has not been observed experimentally. Below is a generic 

reaction for the phosphorylation of an organophosphate with H2PO4
- being the reactive 
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species at pH 7 and inducing phosphorylation. (n.b., The primary form of phosphate is 

highly pH dependent.34) 

R – OH + H2PO4
-  R – OPO3H

- + H2O     Eq. 1 

The first major challenge associated with phosphorylation of an organic molecule 

relates to the so-called water problem.35,36 The equation above shows the release of water 

upon phosphorylation (aka phosphate condensation).14 An abundance of water in the 

environment pushes the equilibrium toward the unphosphorylated reactant rather than the 

phosphorylated product by Le Chatelier’s principle. Therefore, phosphorylation cannot 

readily occur in aqueous environments, which were abundant on the early Earth (as 

mentioned in Section 1.1) and widely considered the most likely place for life to have 

emerged. Unfortunately, phosphate condensation reactions in aqueous solution are 

endergonic and non-spontaneous (e.g., the phosphorylation of ADP to form ATP has a 

ΔrG° = + 30.5 kJ/mol and pyrophosphate ΔrG° = +42 kJ/mol).14  

Adding to the water problem is the low availability of phosphorus in solution. 

Unlike the other five elements essential for life (i.e., C, H, O, N, and S), which exist in 

gaseous form or in a volatile liquid, P is trapped primarily in mineral sources. An 

exception is phosphine gas (PH3), which is not believed to have had an appreciable 

abundance on the early Earth.37 The most abundant natural sources of phosphorus on the 

early Earth are believed to be phosphate minerals, which are highly insoluble in 

water.38,39 The insolubility of phosphate minerals creates a challenge to understanding the 

most likely prebiotic scenario of life evolving in water (i.e., that life evolved in a “warm 

little pond”).40 Additionally, phosphate minerals commonly occur on the surface of stony 

meteorites and carbonaceous chondrites, with 15 phosphate mineral species recorded; 
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carbonaceous chondrites, such as the Murchison meteorite contain various organic 

molecules, such as amino acids, nucleobases, and phosphonic acids and may be useful in 

studying the origins of life.41-45  

The significance of phosphonic acids on the surface of the Murchison meteorite 

may provide a link between phosphite (PO3
3-) as a prebiotic phosphorus source.39 

Phosphite has a solubility 1000 times higher compared to apatite (mineral with phosphate 

rather than phosphite).46 Phosphites as well as reduced phosphorus mineral sources will 

be discussed in Section 1.5. Prebiotic sources of phosphorus could have included 

minerals composed of phosphate and phosphide groups, including minerals on Earth and 

meteoritic sources.  

1.4 Initial Approaches to Understanding Prebiotic Phosphorylation 

To investigate the phosphate problem, a prebiotic phosphorus mineral source 

needs to demonstrate a plausible phosphorylation route. Previous research has 

investigated scenarios to overcome the challenges of organophosphate formation under 

prebiotic conditions. The use of condensing agents, energetic phosphates, and lowered 

water activity (dehydration) have been explored (e.g., see Ref 14 and references therein). 

 In previous experimental origin of life research, phosphorylation of organic 

compounds has been induced through condensing agents such as imidazoles, thioacetate, 

and cyanate compounds.47-55 These agents allow for the formation of a reactive 

phosphorylated intermediate, usually an energetic species that is susceptible to reacting.14 

However, the yields can be low, there are numerous side reactions, and the low pHs may 

degrade biological molecules, specifically nucleic acids.56,57,26 



8 
 

 Energetic phosphates or condensed phosphates are polyphosphates, which have a 

stable P-O-P bond.55 Advantages to these polyphosphate sources are: 1) their high 

solubility compared to orthophosphate (PO4
3-), and 2) phosphate is a better leaving group 

than water, allowing for higher phosphorylation yields.58, 26 Since the leaving group is no 

longer water than phosphorylation yields increase because the need for chemical 

equilibrium to shift to the reactants is no longer present. However, dehydration is needed 

to initially synthesize polyphosphates.59-61 Several researchers have investigated the 

conversion of orthophosphate into these polyphosphates, such as triphosphate, 

trimetaphosphate, pyrophosphate, and cyclotrimetaphosphate (cTMP).62-70 CTMP and 

trimetaphosphates exhibit high phosphorylation yields; High yields are obtained 

specifically when ammonia and ammonium are present.71, 72 Despite phosphorylation 

occurring more readily with polyphosphates, an issue is the scarcity of these sources on 

the early Earth. Researchers showed the formation of these compounds in a volcanic 

environment, with the formation of pyrophosphate and triphosphate.73-75 Additional 

research has investigated phosphorylation reactions using minerals containing KH2PO4 

and NaH2PO4 as abiotic sources of phosphorus.73-76 However, potassium and 

monosodium phosphate are highly soluble in water and were most likely not present on 

the early Earth.44 Thus, the prebiotic plausibility of phosphate minerals needs to be 

considered. Phosphate minerals that have been preserved in the geological record from 

the Hadean eon on Earth include hydroxyapatite (HA), Ca10(PO4)6(OH)2 and whitlockite, 

Ca9(MgFe)(PO4)6PO3OH, which have low solubility of 10-6 M.18,77,78 Recent work has 

shown that the inventory of phosphate minerals on the early Earth may have included 

higher amounts than initially suspected of soluble phosphate minerals such as struvite and 
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newberyite in subaquatic environments.22 Modeling suggests they actually may have 

been more abundant than apatites under the conditions of the early Earth. However, they 

are not as stable in the long term, making it unlikely that they would have been preserved 

in the rock record. 

 Phosphorylation of organic molecules may also be promoted through lowered 

water activity by dehydration. Dehydration experiments include experiments that increase 

temperature or use solvents with lowered water activity; the former will be discussed in 

detail in the next section. Several dehydration experiments focused on increasing the 

temperature of phosphate dissolved with organic compounds to target the water problem. 

and use temperatures These experiments were prominent in the 1960s and focused on 

high temperatures from 120 to 160o C. 79, 80  While the conditions did cause 

phosphorylation (e.g., the formation of nucleotides from  nucleosides).81,82  the 

experiments revealed deterioration of reactants and they depended on unlikely phosphate 

sources.26  

1.5 Twenty-first Century Approaches to Understanding Prebiotic Phosphorylation 

More modern approaches to overcome the challenges associated with 

phosphorylation have investigated lowered water activity through dehydration and the 

use of alternative solvents such as urea and formamide, non-aqueous solvents, and deep 

eutectics. Several recent experiments have also used reduced phosphorus sources rather 

than phosphate minerals, which will be discussed below.83-85 Here, we refer to alternative 

solvents as any solvent that has a low water activity, either because the effective or the 

actual concentration of water in the solvent is low. Major advantages of alternative 

solvents, are increased phosphorylation yields, since water activity is decreased and 
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prebiotic phosphate minerals are also highly insoluble in water.83 Formamide was one of 

the earliest alternative solvents used in 1976 and is prebiotically plausible as a product of 

HCN hydrolysis formed from ammonia and carbon monoxide.86-89 In the presence of 

formamide, phosphorylation of nucleosides and glycerol has been observed, with 

nucleotides produced in yields of 6-59%.90-94  However, issues with some of these results 

pertain to the prebiotic plausibility of the phosphate minerals used (i.e., copper and lead 

phosphate minerals) as well as the use of pure formamide. Other alternative solvents 

include deep eutectics, which are mixtures that evaporate at a consistent ratio when heat 

is applied. Urea and choline chloride (2:1 ratio) is a deep eutectic solvent which was 

shown to phosphorylate a wide range of molecules, nucleotides, glycerol, and glucose 

with phosphorylation yields of 15-99% with a variety of phosphate sources  (i.e., struvite, 

monetite, and NaH2PO4).
95 A deep eutectic mixture of choline chloride and glycerol 

(1:2.5 ratio) has also produced organophosphates.93 However, the prebiotic plausibility of 

choline chloride is questionable and choline is also phosphorylated during the reaction, 

limiting the total phosphorylation.  

Recent research has investigated a deep eutectic composed of urea, ammonium 

formate, and water (UAFW in a 1:2:4 ratio), which has been shown to form formamide 

when heated for several days.32 The components of this solvent are prebiotically 

plausible, since urea is produced when ammonium cyanide encounters sunlight, and 

ammonium formate is produced as HCN is hydrolyzed.96,97 Phosphorylation of 

nucleosides and glycerol in the UAFW is observed with various phosphate sources (e.g., 

hydroxyapatite, struvite, and disodium phosphate) and yields increase as magnesium 

sulfate is added (MgSO4) and the system is heated to 85°C.32  
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While a large focus has been on phosphates as the starting material for 

phosphorylation, reduced phosphorus and energetic phosphorus minerals have also been 

considered. Phosphate minerals contain phosphorus with an oxidation state of +5, and a 

majority of terrestrial surface phosphorus has this oxidation state.98 There are sources of 

phosphorus with lower oxidation states; examples of these reduced phosphorus sources 

include: phosphite, hypophosphite, phosphine, and phosphide (see Fig. 1.2). A compound 

is a reduced phosphorus source, when the charge of phosphorus is less than +5. While 

reduced phosphorus sources were speculated to be significant in origin of life chemistry, 

it wasn’t until analysis of the Murchison meteorite showed the presence of phosphonic 

acids and organophosphonates that a source was identified.38,45 The Murchison meteorite 

is a carbonaceous chondrite containing amino acids, carboxylic acids, alkyl sulfonic 

acids, and phosphonic acids. Eight alkyl phosphonic acids with concentrations of 9 

nmol/gram and orthophosphate at 25 μmol/gram were identified. This was a significant 

discovery because of the presence of phosphorus in a reduced oxidation state (+3) as 

phosphonic acids or organophosphonates, which have a P-C bonds.41 Phosphorus in a 

reduced oxidation state (+3) as phosphonic acids or organophosphonates, which have a P-

C bond.45 
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Additionally, plausible prebiotic minerals containing phosphide groups may have 

also been sources for phosphorylated biological compounds.  Phosphides are commonly 

found on meteorites and to a lesser extent in comets and on interplanetary dust 

particles.99,100 The extraterrestrial mineral schreibersite, (Fe,Ni)3P is an example of a 

phosphide mineral; the oxidation state of phosphorus is about -1 compared to +5 in 

orthophosphate.101-103 The presence of schreibersite on Earth is suggested by the 

concentrations of phosphite found in carbonate rocks, which date to 3.52 billion years as 

well as its natural occurrence in a few locations on Earth, such as Disko Island.84,104,105 

Furthermore terrestrial phosphides have recently been identified in Israel and Jordan near 

the Dead Sea, Levant.106 The reaction of schreibersite with water produces dissolved 

phosphorus oxyanions (e.g., pyrophosphate P2O7
4-, phosphite PO3

3-, and hypophosphite 

P2O6 
4-) and researchers have phosphorylated nucleosides into nucleotides with this 

mineral under moderate temperature (20-85oC) and basic pH (6.5-8).107-109  

Phosphite species produced by schreibersite are significant in their increased 

solubility by nearly 1000 times, while hypophosphite is 106 times more soluble (when 

 

Fig. 1.2 Structures of common phosphorus species are depicted. 
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divalent cations are present) compared to phosphates.26 Furthermore, phosphite species 

may include metal phosphites in the form of MHPO3 (M = Ca2+, Mg2+, Fe2+). Phosphite 

species may be oxidized by hydrogen peroxide, H2O2 in the presence of Fe2+ to form 

polyphosphates (i.e., triphosphate and trimetaphosphate) via the Fenton reaction. The 

condensed phosphates formed by the Fenton reaction are much more reactive in water 

than orthophosphate (PO4
3-). Moreover, this reaction is more versatile because it can be 

performed under a wider range of pHs and it produces appreciable yields even at lower 

concentrations.26,108,110 Additionally, phosphites may also react with organic compounds, 

including glycerol phosphates.111,112,86 

1.6 Understanding Prebiotic Chemistry Through Mineral Surfaces 

Surface chemistry is significant for its applications in a variety of processes, of 

notable importance is heterogeneous catalysis (see Fig. 1.3). 90% of industrial material 

output including fertilizers and plastics are produced by heterogeneous catalysis; 

examples include the Haber-Bosch process for the synthesis of ammonia and 

hydrogenation (e.g., production of saturated fats and oils).113,114,115 Interactions on 

surfaces are crucial for industrial systems as well as processes such as soil weathering. 

Surface interactions will be the main focus of this project, specifically interactions on a 

solid surface between liquid-solid interfaces. A general review of solid and mineral 

surfaces will be given below.  
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1.6.1 Crystalline vs. Mineral Surfaces 

To have a basic understanding of the physical and chemical properties of a solid 

surface, the atomic geometry or physical arrangement of its atoms needs to be studied 

(Fig. 1.4). While ideal surfaces are flat and have no defect sites, real single crystals have 

defect sites. In contrast to single crystals, minerals have many more defect sites. These 

defect sites affect the reactivity of materials.116-119 Surfaces are affected by their 

unfavorable thermodynamics, unlike the bulk of a material; surfaces have a positive free 

energy of formation, caused by bond breakage and reduction in coordination 

number.120,121 This unfavorable positive free energy is minimized by surface atom 

rearrangement to decrease the surface area (e.g., by relaxation and reconstruction).121 

Nonetheless, there will be charge density at the surface in so-called dangling bonds. 

These are orbitals that were previously used to bind to the bulk material, before there was 

 

Fig. 1.3 Significance of surface reactions in 

different fields. Redrawn and adapted from Ref 113. 
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a surface. The stability of a surface can be reshaped by the dangling bond surface states 

(i.e., anion and cation derived from the electron-hole pairs); a surface is autocompensated 

when the charge on the surface is neutral and stable.122 Once the surface is 

autocompensated, the atomic arrangement of the surfaces may undergo relaxation, 

change in the interlayer spacing between the surface layers as compared to the bulk 

material or reconstruction, change in symmetry for the surface, creating different 

symmetries between the surface and bulk.120,122 The extent of relaxation or reconstruction 

depends on each individual surface and the degree to which its rehybridized. The surface 

dangling bond charge density may be rehybridized due to the low atomic coordination of 

the surface. This rehybridization may induce charge transfer between surface atoms and 

lead to new bond formation (i.e., surface dimerization) or bond formation between 

surface and adsorbed molecules (i.e., adatoms).122 In general, surfaces undergo 

autocompensation and its atomic geometry is dependent upon rehybridization and surface 

strain, to reduce its free energy (surface tension).122 
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Surface chemistry is complex, as mentioned above various surface defects are 

present on solid surfaces, these allow for multiple types of binding sites. This may 

increase the complexity in analysis, an additional layer of complexity stems from 

symmetry- breaking occurring on a solid-gas or solid-liquid interface. Mineral surfaces 

are more complex than real crystal or metal surfaces, as most minerals have irregular 

surfaces and are generally not ideally planar (examples of mineral surfaces planar at the 

atomic scale include [001] planes of micas and chlorites).123 Minerals may not always 

have repeating two-dimensional surfaces, some may be amorphous and an additional 

factor is the point of zero charge (pzc, different for each mineral).18 The pzc indicates the 

pH at which the mineral surface is neutral, pH values above the pzc create an 

environment for cationic surface reactions and adsorption, likewise pH values below the 

pzc do the same with anions.124 The pzc was not taken into account for this project due to 

 

Fig. 1.4 Schematic representation of surface defects. 

Adapted from Ref. 120. 
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time constraints; however, this is an additional factor of complexity when dealing with 

mineral surfaces. 

Minerals promote reactions and may have been key for prebiotic chemistry. 

Origin of life researchers recognized this as early as 1940s.125 Porous minerals contain a 

variety of defect sites, which allows for concentration of molecules but adsorption is also 

dependent upon pH.126 Macromolecules essential for life include nucleic acids, amino 

acids, and sugars; minerals serve to concentrate and assemble these monomers so that 

they may assemble and polymerize, rather than degrading in an aqueous environment.127-

129 Research on amino acid assembly has shown small protein formation on clays through 

evaporation, various other minerals have also been studied in relation amino acids (e.g., 

rutile, calcite, hematite, montmorillonite, and pyrite).130-132 Mineral surfaces may also 

have higher enthalpies of rehydration, allowing condensation reactions to occur more 

readily, and pores provide protection from UV radiation.133,134  

Phosphorus-bearing minerals that were prevalent on the early Earth include 

hydroxyapatite (HA) and whitlockite, these minerals have low solubility and unfavorable 

thermodynamics with aqueous solutions.44 Current research32 has shown that 

hydroxyapatite can interact with solutions of prebiotic molecules that have lowered water 

activity, such as urea rich solvents composed of urea, ammonium formate and water or 

UAFW-with additives (e.g., magnesium sulfate). Additionally, this research suggests that 

phosphorylation might occur through surface mediated processes, as HA can be used to 

phosphorylate; however, this does not directly correlate with an increase in solubility of 

orthophosphate from the mineral.32 Scenarios with urea-rich solvents take into account 

lowered water activity and allow for phosphorylation to occur more readily, since life 
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likely originated in an aqueous environment and water is a product of phosphorylation (as 

shown in Eq. 1.). This high water activity can be mitigated with the use of alternative 

solvents and advantages of these solvents are lowered water activity while maintaining a 

fluid environment. Additionally UAFW forms a fourth component, formamide, upon 

heating.32 The focus of this thesis is based on phosphates interacting with non-aqueous 

urea-rich solutions (UAFW). The purpose of our research project is to develop 

hydroxyapatite thin films that are conducive to surface analysis and can be used to 

investigate the activation of phosphorus in mineral surfaces and surface-mediated 

interactions in mineral transformation. 
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CHAPTER 2. EXPERIMENTAL METHODS 

2.1 Methodology Overview 

Most surface sensitive techniques used to study interfaces require a conductive 

backing. A concern in surface chemistry is the range of instrumentation possible for 

analysis. For example, scanning tunneling microscope (STM) and x-ray photoelectron 

spectroscopy (XPS) instruments are selective for conductive materials and insulators/low 

heat conductors are difficult to analyze, as there is a charge build up, limiting analysis.135-

137 An alternative solution to overcome this issue is through the use of thin film samples 

deposited on a conductive backing; light can adequately reflect off the surface and charge 

does not buildup.138 

Thin hydroxyapatite (HA) films will be synthesized on metal substrates (i.e., 

copper and gold) using electrochemical deposition and characterized prior to reaction by 

polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS), 

scanning electron microscopy (SEM), and energy-dispersive x-ray spectroscopy (EDX). 

These methods provide information about the surface, surface morphology, and the 

elemental composition, respectively. These techniques will be used to verify that HA has 

been synthesized and assess its initial composition.  

Films will then be reacted with solutions containing mixtures of prebiotic 

solutions such as urea, ammonium formate, and water (UAFW) at room temperature (298 

K). Structural changes as a function of time will be monitored using PM-IRRAS at one 

hour intervals for a total of four hours. Control experiments with binary solutions 
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(e.g., urea/water and ammonium formate/water) and water will be used to help decipher 

the spectra for UAFW. Post reaction analysis with SEM and EDX will support these time 

dependent studies to understand mineral corrosion, and supernatant analysis by nuclear 

magnetic resonance spectroscopy (NMR) will investigate the release of phosphate into 

solution.  Overall stages and methodology are depicted in Fig. 2.1. 

Two primary research questions arise from this project: “Can ultrathin phosphate 

mineral films be developed?” and “Can molecular interactions of urea rich solvents on 

HA be probed and what role do individual components of the solvent play in mineral 

dissolution?” Developing ultrathin phosphate mineral films for surface analysis suggests 

films need to be robust and be similar enough to have reproducible results for each 

reaction. Mineral dissolution can be monitored by characterization pre- and post-reaction, 

and molecular interactions can be probed by observing structural changes with time and 

through control experiments.  

 

Fig. 2.1 Schematic showing the stages and methodology of this project. 
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2.1 Synthesis of Hydroxyapatite: Electrochemical Deposition 

HA was chosen as our model phosphate mineral since procedures for synthesizing 

thin films of this material via electrodeposition have already been developed.  HA is a 

bioceramic and found in bone and tooth enamel.139 Previous research has focused on 

developing implants for orthopedic and dental procedures, allowing for established 

synthesis methods of this mineral to be accessible and easily modified for this study.140-

144 The aim of this project is to study the surface of hydroxyapatite and the role of mineral 

surfaces in phosphorylation of small biological molecules. Since the focus of this study is 

surface analysis, the synthesis method needs to be suitable for this analysis, meaning 

desired characteristics of HA films need consideration.  

Electrochemical deposition of HA films has been chosen for several reasons. 

First, this method allows for growth on mirror-finished samples that are highly reflective 

for infrared light. Other techniques such as hydrothermal and sol-gel processes were 

considered, but they require defect sites for initial nucleation and film growth, while 

electrochemical deposition does not depend heavily on defect sites.145 Initially a 

hydrothermal method was used to prepare HA films by Ethan Ertell from the Poyraz 

laboratory, but this technique was not conducive for infrared surface analysis. 

Additionally, electrochemical deposition results in a homogeneous composition and 

customizable thickness. Additionally, it is cost efficient compared to synthesis using 

vacuum deposition methods (e.g., plasma enhanced chemical vapor deposition or 

physical vapor deposition).145  

Electrochemical deposition (i.e., electrodeposition) is a synthesis technique used 

to deposit materials on conductive substrates; metal plating is a common example. This 
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process occurs in an electrochemical cell, which may have two or three electrodes. A 

three-electrode system allows for better accuracy. The primary components include a 

working electrode (WE), counter electrode (CE), reference electrode (RE), and an 

electrolytic solution.146 The working electrode is the electrode where the material of 

interest is deposited. The counter electrode or secondary electrode serves to balance the 

reactions occurring at the WE. For example if reduction occurs at the WE, oxidation of 

the same magnitude occurs on the CE. The CE needs to allow electron transfer reactions 

to occur more readily and be inert, to minimize interference with the WE. The reference 

electrode serves to maintain a consistent potential and should have little to no current 

passing through it.147 In electrochemical reactions, a charge exchange occurs between 

chemical species and an electrode. An example of a simple electrode reaction is electron 

transfer, including oxidation at the anode and reduction at the cathode. Reactions that 

involve electron transfer occur when species are close to the electrode surface; the 

transformation of reactant to product must be constant and implies addition and removal 

of the reactant and product in combination with electron-transfer.147 Species undergo a 

charge transfer and are also transferred to the electrode. Three types of mass transport 

include diffusion, migration, and convection. 148   

For electrodeposition of HA, a potentiostat is used to control the difference in 

potential between the WE and CE. (An Interface 1010 B Potentiostat/Galvanostat/ZRA 

was used for this study.) The potentiostat is used in a potentiostatic mode to control the 

potential by modifying the current. The deposition can be run in a pulsed mode (where 

the potential is varied as a square wave) or through linear sweep voltammetry (potential 

is increased linearly from one defined value to another). Alternatively, cyclic 
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voltammetry may be used; this technique ramps the potential of the WE through a range 

of voltages, starting and ending at the same value.146  

The experimental setup for electrodeposition was developed with the help of Dr. 

Altug Poyraz. The electrochemical cell components for the synthesis of HA were: 

platinum for the CE, gold for the WE, saturated calomel electrode (SCE) for the RE, and 

a molar (electrolytic) solution of 0.0168 M Ca(NO3)2·4H2O and 0.0100 M NH4H2PO4, as 

illustrated in Fig. 2.2.   

The concentrations of the molar solutions were determined to ensure a 1.67 

stoichiometric ratio corresponding to the ratio of Ca to P in HA. Cyclic voltammetry was 

the technique chosen for electrodeposition, a voltammogram is presented in Fig. 2.3. The 

potential used for the gold substrate was 0.0 V to – 1.6 V and the molar solution was pH 

adjusted to ~5.7.  To create ultra-thin films, the scan rate (mV s-1), number of cycles, 

temperature, and concentration were adjusted. The working principle for electrochemical 

deposition is based on two electrical currents, one produced by the ions in the electrolytic 

 

Fig. 2.2 Schematic (left) and experimental setup (right) for electrochemical 

deposition.  
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(molar) solution and the other produced by the external circuit. As the potential of the 

electrode decreases, species in the electrolyte solution are reduced, which increases the 

current by creating more phosphate and hydroxide anions in solution; possible reduction 

reactions are listed below (see Eqs. 2.1-2.3).147 These ions react with free calcium cations 

to form HA on the working electrode.  

 

 

 

 

 

 

 

 

 

 

 

O2 + 2H2O + 4e- 
 4OH−   Eq. 2.1 

H2PO4
−+ e- 

 HPO4
2- + ½ H2  Eq. 2.2 

HPO4
2−+ e- 

 PO4
3- + ½ H2  Eq. 2.3 

 

The thickness of the films increases depending on the concentration of the 

electrolytic solution used; however, this is limited by the rate of diffusion. Film thickness 

is also controlled by temperature. The temperature affects film porosity, the diffusion rate 

of ions, and the solubility of HA. With increasing temperature the solubility of HA 

 

Fig. 2.3 Cyclic Voltammogram Sample 26 parameters: 59–60 oC, 

25 mV s-1, 10 mA, 0.0V to -1.6V, pH: 5.814, cycles: 3.  
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decreases, which promotes deposition on the WE. After a certain maximum temperature 

is reached, film thickness does not continue to increase but to decrease, due to increase of 

phosphate and hydroxide ions that diffuse and form HA in solution rather than on the 

surface of the electrode.140 

 

2.2 Reflection Absorption Infrared Spectroscopy (RAIRS)  

2.2.1 Theory of RAIRS 

 Reflection-absorption infrared spectroscopy (RAIRS) or infrared reflection-

absorption spectroscopy (IRRAS) is a type of optical spectroscopy that focuses infrared 

light onto a reflective and conductive substrate (e.g., metals), giving information about 

the surface structure (i.e., functional groups and coordination of adsorbed species). This 

technique relies on the vibrational motion of molecules and their interaction with infrared 

light.  

 Within molecular orbitals, there are three types of energy levels: rotational, 

vibrational, and electronic. Infrared radiation is responsible for probing molecular 

vibrations. For a vibrational mode to be infrared active, there has to be a net change in 

dipole moment with the motion of the molecule’s vibration. This implies a difference in 

electronegativity as well as the symmetry of a molecule in motion, which may serve to 

enhance or cancel out a dipole moment. The optoelectric theory behind RAIRS relies on 

this gross selection rule (i.e., a net change in dipole moment as the molecule vibrates). 

However, it is also affected by the reflective surface, which is most commonly a metal.149 

 The incoming infrared light striking the surface has two components, s- and p- 

polarization. These components are defined by their relation to the plane of the incident 

and reflected light. (This plane is represented in red in Figure 2.4; s- is perpendicular to 
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the plane and p- is parallel to the plane.) Fig. 2.4 illustrates E as the electric field vector 

of the incident (Ei) and reflected (Er) light. The incident s-polarized light (Es
i) undergoes 

a phase shift of approximately 180° such that the reflected s-polarized light (Es
r) will 

destructively interfere with the incident s-polarized light and not be detected. In contrast, 

the incident p-polarized light (Ep
i) constructively interferes with the reflected p-polarized 

light, allowing for an increased electric field. Therefore, the p-polarized light gives 

information about the surface, due to its constructive interference.149,150 

 

 

 

 

 

 

Fig. 2.4 Electric field vectors for p-polarized and s-polarized 

light in relation to the surface, where Φ represents the incident 

angle. The bottom schematic illustrates that p-polarized light 

(blue) is parallel to the incident and reflected plane (red), while s-

polarized light (green) is perpendicular to this plane.  
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P-polarized light may be broken down into ⊥ perpendicular and ∥ parallel 

components. The perpendicular component contributes a higher amplitude compared to 

the parallel component, when a grazing angle of incidence is used. Both electric field 

sums of s- and p- are represented in the equations below, where 𝛿 represents a phase shift 

caused by reflection, θ is the phase of the light, and r is a reflectivity coefficient. 

Different metals have varying reflectivity in the infrared region, some yielding higher 

signal intensities. Varying the incident angle (Φ or φ) also changes the signal intensity 

caused by a higher amplitude of the electric field, as illustrated in Fig. 2.5. In Fig. 2.5 the 

p-polarized light is partitioned into perpendicular (⊥) and parallel (∥) components and 

absorption intensity is plotted as a function of the incident angle, where 𝐸𝑝
⊥ /𝐸𝑝

𝑖  represents 

the amplitude of the perpendicular electric field vector and (𝐸𝑝
⊥ /𝐸𝑝

𝑖 )2secΦ represents the 

total absorption intensity. As the incident angle increases, the absorption intensity and 

amplitude of the electric field increases; however, once the incident angle approaches 85° 

and greater, both the amplitude and absorption intensity drastically decrease, caused by 

destructive interference. Listed below are Eq. 2.4 and Eq. 2.5, where the former 

represents the electric field vector for s-polarized light, and the latter represents the 

electric field vector for the perpendicular and major component of p-polarized light.149,150 

 

 

 

 

𝐸𝑠 = 𝐸𝑠
𝑖 [sin 𝜃 + 𝑟𝑠 sin(𝜃 + δ𝑠)]  Eq. 2.4 

𝐸𝑝
⊥ = 𝐸𝑝

𝑖 sinφ [sin θ + 𝑟𝑝 sin(𝜃 + δ𝑝)] Eq. 2.5 
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Image dipole theory, represented in Fig. 2.6, explains why only vibrational 

motions with a dipole moment perpendicular to the plane of the surface can be observed 

by RAIRS. When infrared light interacts with molecules on the surface, the dipole 

moment induced by this vibration creates an image dipole within the conductive surface. 

Image dipoles are created by the rearrangement of electrons near the surface of a 

conductive material such as a metal. If a dipole moment is perpendicular to the surface, 

then the image dipole will also be perpendicular; this will amplify the infrared signal 

 

Fig. 2.5 𝐸𝑝
⊥ /𝐸𝑝

𝑖  represents the amplitude of the perpendicular 

electric field vector and (𝐸𝑝
⊥ /𝐸𝑝

𝑖 )2secΦ represents the total 

absorption intensity. As the incident angle increases the 

absorption intensity and amplitude of the electric field 

increases to a certain extent. The small schematic on the top 

left illustrates the major contribution of the perpendicular 

component compared to the parallel component of p-polarized 

light. Obtained and used with permission from Ref. 150.  
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(Fig. 2.6A). If the dipole moment is parallel to the surface, then the image dipole will also 

be parallel, with identical magnitude and opposite direction. There will be no net change 

in dipole moment because the vectors cancel.  

Experimental studies performed with IRRAS depend solely on p-polarized light 

and may be normalized by the metal substrate. Reflectivity of the p-polarized light is 

measured by an absorbance or transmittance spectrum, as described  in Eq. 2.6.149,151,152 

In Eq. 2.6, Rp represents p-polarized reflectivity, d corresponds to the film of interest on a 

metal surface, 0 corresponds to the bare substrate (i.e., the underlying metal), and A 

corresponds to absorbance of infrared light.151,152 

 

 

 

 

 

 

 

 

 

2.2.2 Theory of Polarization Modulation-Infrared Absorption Reflection 

Spectroscopy (PM-IRRAS) 

Greenler was the first to establish IRRAS through experiment and theory by 

investigating solid-solid interfaces.152 This technique can be enhanced through 

 

Fig. 2.6 Image dipole theory illustration. A) perpendicular dipole 

and signal amplification B) parallel dipole and no net signal.  
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polarization modulation to minimize contributions from fluid phases when analyzing 

liquid-solid and gas-solid interfaces. PM-IRRAS is often uses a photoelastic modulator 

(PEM) to rapidly alternate the incident light between s- and p-polarizations.151,153 

However, for these experiments the polarization of light was modulated manually. As 

referenced in the previous section, only the p-polarization of light gives information 

about the surface but s-polarization gives information about the gas or liquid phase above 

a solid surface. By ratioing p- and s-polarized light (see next section) information about 

adsorbates is acquired. 

2.2.3 Experimental Implementation 

2.2.3.1 Optical Alignment 

The experimental setup for polarization-modulation infrared reflection-absorption 

spectroscopy (PM-IRRAS) is based on an optical system, designed by Katerina 

Slavicinska and T.J. Beckman from the Abbott-Lyon Laboratory. Optical layouts for PM-

IRRAS are limited by the FTIR spectrometer sample compartment size, since the infrared 

light beam must be redirected and optical components may be too large. Therefore, our 

optical layout used the external beam port of a Thermo Scientific Nicolet iS50 FTIR 

spectrometer and is an external setup. The external infrared light beam from the 

spectrometer is redirected by a 2” flat gold mirror, at an angle of 45° to a 6” parabolic 

gold mirror (a length of 6” allows for a longer beam path to extend to the polarizer and 

sample). Before reflecting off the sample surface, this light beam passes through a ZnSe 

wire grid polarizer. Once light is reflected off the sample, which is mounted in a liquid-

solid cell onto a stainless steel rotational stage (allowing for control of the incident 

angle), it diverges onto a 6” uncoated gold parabolic mirror and is redirected and 

collimated onto a 4” parabolic uncoated gold mirror. Light is then converged onto a 
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wide-band mercury cadmium telluride (MCT-B) type detector, chosen due to a wider 

coverage in the mid IR region (down to 400 cm-1). The optical layout for PM-IRRAS 

experiments is illustrated in Fig. 2.7.   

 

 

 

 

 

 

 

 

 

 

 

 

 Incident angle modification was possible through the sample mount in a liquid-

solid cell, which was then placed into a stainless steel apparatus. This stainless steel 

apparatus allows for simple modification of the incident angle and height. Determination 

of the incident angle through this experimental setup and a schematic of the sample 

mount is illustrated below in Fig. 2.8. In the schematic and on the stainless steel 

apparatus, there is a black line near the rotational stage, representing the surface normal. 

The angle on the yellow line in the schematic (white on the actual rotational stage) is 

 

Fig. 2.7 Optical layout for PM-IRRAS, enclosed by two purge boxes and 

connected by clear PVC tubing.   
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offset from the surface normal by 45°, the angle on the yellow line is adjusted by the 

user, depending on optical alignment. Determination of the incident angle (presented as 

A, in this schematic), is simply: A°= 360° - 45°- angle modified by user (e.g., 262° for 

most experiments in this study).  

  

Initially PM-IRRAS experiments were going to be conducted in situ with a ZnSe 

prism to maintain a thin layer of UAFW on the sample surface while heating. However, 

the original liquid-solid cell had an uneven heat distribution and leaked over time. 

Therefore, the liquid-solid cell needed to be redesigned and a new ZnSe prism needed to 

be purchased. To optimize PM-IRRAS experiments, undergraduate Shannon 

Fig. 2.8 Schematic of liquid-solid cell mount, containing a rotational stage for incident 

angle modification.  

Rotational stage

Liquid-solid cell

360°

180°

sample

45°

A °

A °

Surface normal 

(black line on 

rotational stage)

262° (modified by the user)

A° = 360°- 262°- 45°

A °= incident angle
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McElhenney (CBSURE REU participant) performed optical calculations to determine the 

optimal set-up parameters using Mathematica. This program determined the optimal 

angle of incidence with different parameters in place, including with and without, a ZnSe 

prism (45°-45°-90°) and a layer of an urea, ammonium formate and water (UAFW) 

solution on the HA surface. The aim of these calculations was to improve signal intensity 

and determine if different regions in the infrared required different angles of incidence 

when a prism and a consistent layer of UAFW was in place. S. McElhenney measured the 

refractive index of the UAFW experimentally for the visible region and then determined 

the refractive index theoretically via the Kramer’s-Kronig method. Critical angles were 

calculated with Snell’s Law. Before elaborating more on these methods, optical concepts 

will be reviewed.  

Initially, the aim was for infrared light to have a path of: air, prism, UAFW, HA, 

metal substrate, HA, UAFW, prism and air. However, the system in place for this project 

has a path of: air, HA, metal substrate, HA, and air. For a light beam to successfully enter 

and exit different mediums (materials), it needs to be refracted and not reflected, meaning 

the refractive index (RI) of each material and critical angle are taken into account when 

calculating the incidence angle. Reflection occurs when light hits an object and instead of 

being absorbed or passed through this object, light is redirected. Refraction occurs when 

light hits an object and instead of being reflected off the interface, it bends at this 

interface and passes through this boundary. For refraction to take place, the refractive 

index of each material in a path needs to be taken into account. Refractive index (RI) 

describes the speed of light as it passes through a material; a higher RI value indicates an 

increased speed. Snell’s law describes refraction and predicts the angle at which this light 
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will bend after passing a material, described in Eq. 2.7. In this equation, n represents 

refractive index, θ1 is the angle of incidence, and θ2 is the angle of refraction. For light to 

be refracted or pass through a material, the angle of incidence cannot be great than the 

critical angle. A critical angle is the value of the incident angle in which refraction does 

not take place, instead reflection does.  

 

  

 Since a major component of UAFW is water (1:2:4 molar ratio), the RI varies 

with water absorption in the infrared region, producing changes in the RI of UAFW as a 

function of wavelength.154,155 A refractive index is complex, described by Eq, 2.8. 

 

 

In this equation, the refractive index is broken down into imaginary (k) and real values 

(n). Imaginary values refer to the amount of light lost due to absorption by the medium, 

whereas real values refer to the refracted light. The Kramers-Kronig method relates both 

real and imaginary parts of the complex refractive index (Eq. 2.9), this method was used 

to determine the infrared RI of UAFW.155 In Kramers-Kronig, n represents the complex 

index of refraction, nn are the real values and nk represents the imaginary values, ω is the 

rotational frequency, ω′is the change in rotational frequency, and P is the Cauchy 

Principal Value (used for conveying values when using improper integrals).  

 

 

𝑛1 sin 𝜃1 = 𝑛2 sin 𝜃2 Eq. 2.7 

𝑛𝑛(ω) =
1

𝜋
𝑃 ∫

𝑛𝑘(ω
′)

ω′−ω
𝑑ω

∞

−∞
 Eq. 2.9 

𝑛 = 𝑛 + 𝑖𝑘 Eq. 2.8 



 

35 
 

Transmittance data for UAFW was collected with ATR-FTIR, this data was used to 

obtain imaginary values of the RI using Eq. 2.10, where 𝜆 represents wavelength, 𝛼 is 

absorbance, and 𝑑𝑒𝑓𝑓 is effective depth. Real values were calculated by the Kramers-

Kronig equation; the imaginary values were then obtained from these real values with 

code obtained from Rowe et al. and Lucarini et al. 154,156 

 

 

 Calculated values for the real refractive index of water and UAFW are illustrated 

in Fig. 2.9, where reference values are used to gauge the precision of these calculations. 

Fig. 2.9 indicates that calculated values are valid because of their similarity to reference 

values, and UAFW behaves similarly to water because it is a prime component. After this 

step was completed, all critical angles were calculated using Snell’s Law, critical angles 

for different interfaces are depicted in Fig. 2.10. These critical angles describe the 

maximum angle in which refraction rather than total internal reflection occurs. For 

example, the critical angle for a ZnSe prism and UAFW needs to be below ~48° for 

refraction to occur, not depicted is the critical angle for HA to air, 40° or less.  

𝑘(𝜆) =
𝜆𝛼

4𝜋𝑑𝑒𝑓𝑓𝑙𝑜𝑔10(𝑒)
  Eq. 2.10 
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Fig. 2.9 Real refracted index as a function of 

wavenumbers for calculated water, reference data of 

water, and UAFW. Image Credit: S. McElhenney 

 

Fig. 2.10 Critical angle for different interfaces as a 

function of wavenumber. Image Credit: S. McElhenney 
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In addition to optical calculations, the effect of varying the angle of incidence 

experimentally for bare HA/Cu was measured. Fig. 2.11 describes the change in spectra 

as the angle of incidence decreases from 80° to 60°. P-O stretches are negative at 80° and 

become positive and increase in intensity as the angle decreases. A feature at 1010 cm-1 

changes direction and intensity as the angle deceases. The angle used for experiments in 

Chapter 5 was 53°, for a system with HA and air (UAFW was on the surface of HA, but 

spectra was collected when this solution was dry).  The feature at 1010 cm-1 is present in 

some of the spectra shown in Ch. 5. Despite 53° used for each experiment, the sample 

might have been shifted slightly forward, causing this feature to appear in some spectra.  

 

 

 

 

 

 

 

 

Fig. 2.11 PM-IRRAS spectra of HA/Cu in air at 298 

K, where the angle of incidence is varied. 
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2.2.3.2 Experimental Modifications 

 An infrared liquid-solid cell was designed by the Abbott-Lyon Laboratory (K. 

Slavicinska and T. J. Beckman) as a sample mount, illustrated in Fig. 2.12. The cell has a 

cylindrical body composed of Teflon and an inner rod also made of Teflon. The purpose 

of the inner rod is to hold the sample in place and adjust the position by bringing it closer 

to the surface of the Teflon body. Inside this Teflon rod is a 4.5-inch Cu threaded rod and 

a 0.75-inch Cu disk, a 1-inch diameter sample, with HA on its surface is attached to this 

disk and threaded rod. This threaded rod, disk and sample are loaded into the inner 

Teflon rod and a disk is attached to the end of the threaded rod, to limit movement. This 

inner Teflon rod is then placed in the main Teflon body. The liquid-solid cell is placed in 

a stainless steel apparatus, containing a rotational stage with corresponding angles at the 

bottom. This allows for control of the angle of incidence. The design for this 

experimental apparatus was based on work done by researchers Kubota, Ma, and 

Zaera.157 

 

 

 

 

 

 

 

Fig. 2.12 Teflon body cell used for liquid-solid interface 

analysis. The cell has two Teflon pieces, the smaller piece 

holds the sample and allows for forward and reverse 

movement. 
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After characterization, synthesis, and liquid-solid-cell alterations, a purge system 

was established to improve the background spectrum. Two different purge boxes were 

created to cover the entire optics; these were connected with 3.5” clear PVC tubing. A. 

Nastase helped to establish a purge system using a purge gas generator (Model CO2-

PG14), to limit CO2 and H2O gas peaks. This system was connected to a flow meter and 

Teflon tubing was used to create two lines that would purge the system, one connected 

directly to the instrument and the other directly to the optical system. As shown in Fig. 

2.13, the amount of gas phase H2O and CO2 decreased significantly once the system was 

in place. 

 

 

 

 

 

 

 

 

 

 

   

Fig. 2.13 Comparison of PM-IRRAS spectra with and without a purge 

system. The black line is a single beam spectra of HA without a purge. 

The red line is also a single beam spectra of HA with a purge in place.  
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2.2.4 Data Collection and Interpretation 

An additional modification included background subtraction performed at the 

beginning of each experiment, to account for variations due to daily changes in room 

temperature and humidity. The polarization of light was modulated manually (s-and p- 

polarization on the grid polarizer are depicted in Fig. 2.14), rather than with an automatic 

photoelastic modulator PEM), consistency between each s- and p-polarization of light 

was ineffective, so a marking was made for the polarization mount. Fig. 2.15 represents 

the background spectrum before and after incorporating this marking, with B representing 

a flatter baseline accounting for instrumental noise, mostly found in the P-O region.  

 

 

 

 

 

 

 

 

 

Fig. 2.14 Grid polarizer in a rotation mount, left: s-polarization 

and right: p-polarization.  
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After s- and p- polarizations were collected for each sample, spectra were 

processed to produce a normalized spectrum. Spectral data presented in Chapters 3 and 4 

was processed by normalizing p- and s- spectra. That is dividing p- by s- spectra (P/S) to 

minimize gaseous CO2 and residual water. However, this processing (P/S) decreased CO2 

and residual water in the normalized spectrum, but did not entirely eliminate it. 

Processing s- and p- polarizations of light through a different method, was found to be 

more effective at eliminating spectral noise, this new processing method is depicted 

below in Eq. 2.11, termed the R-spectrum. This data processing method has been used by 

other research groups.151 

A)        B)

 

 

 

Fig. 2.15 Comparison of backgrounD-spectra for HA, termed Ns and represented by Rs/Rb. 

where R= P/S. Rb is the backgrounD-spectra for all PM-IRRAS experiments performed on 

the day of consecutive experiments. Rs is taken at the beginning of a series of experiments 

and after Rb, to assess instrument noise levels. A) Ns spectra without the marking on the 

polarizer. B) Ns spectra with marking on the polarizer.  
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This equation was implemented for data in Ch. 5, and is more effective at reducing 

residual CO2 and H2O compared to processing with P/S. Fig. 2.16 compares spectral 

processing with Eq. 2.12 and by P/S without and with a purge system in place. 

Significantly less CO2, even when no purge system is in place indicated by the top figure, 

in comparison to P/S. Fig. 2.16 also illustrates spectral data when a purge system is in 

place.  

 

𝑅 =
(𝑃−𝑆)

(𝑆+𝑃)
 Eq. 2.12 
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Fig. 2.16 Comparison of data processing methods, spectral data 

with no purge system (top) and data with purge system in place 

(bottom). Data processed with Eq. 2.2.4.3 produces a flatter 

baseline and eliminates CO2 and H2O more effectively than P/S. 
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Initial data collection for an experiment involved: 1) assessing the instrumental 

noise level before reaction of an HA film, and 2) decreasing the noise level to improve 

the background for subsequent reaction series for each film. Instrumental noise level was 

assessed by first collecting an Rb and then an Rs spectrum. Rb spectrum was processed by 

collecting an R spectrum with s- and p- polarizations, either by processing the data by P/S 

or by using Eq. 2.13 (since Eq. 2.13 was discovered during the last stage of this project). 

Rb and Rs spectrum were of unreacted HA films, the latter is taken first and analogous to 

a single-beam spectrum that would normally be taken without a polarizer, the former is 

analogous to a single-beam surface spectrum. Rb is the background spectrum for a 

reaction series of one specific film. After Rb and Rs spectrum were collected, an Ns 

spectrum was collected by dividing these spectra (represented in Eq. 2.15). Ns spectrum 

represented the instrument noise level, an ideal Ns spectrum was flat and had no CO2 or 

H2O present, if the spectrum was curved or had CO2 or H2O then the system was adjusted 

before starting a reaction series.  

 

 

 Spectral data collected for a reaction was processed through a series of four steps 

that correspond to four R-spectra, which were arbitrarily termed: R-, D-, O-, and B-

spectra. R-spectra for all experiments were obtained by processing reaction and 

background data (bare HA film) by Eq. 2.13 (where x represents a 1, 2, 3 or four hour 

experiment), and plotting them. The maximum intensity value corresponding to both 

reaction and background of the R-spectra was typically at 1235 cm-1, and the intensity 

value of this wavenumber for the background spectrum was obtained. R-spectra for a 

𝑁𝑠 =
𝑅𝑠

𝑅𝑏
 Eq. 2.15 
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reaction series (including the background) were divided by this intensity value, to 

produce D-spectra, shown in Eq. 2.16. An O spectrum was obtained by locating the 

minimum intensity value of the D-spectra for a reaction series. This value (Cmin) was then 

subtracted from every intensity value for a reaction series to produce O-spectra (Eq. 

2.17). Finally, B-spectra were acquired by dividing O-spectra by the background 

spectrum (O-spectrum of the bare HA film), represent in Eq. 2.18. 

  

  

 

 

 

 

 

2.3 Characterization Methods 

Characterization was used for two primary purposes: initially to confirm and 

optimize the synthesis of HA and later on to assess mineral corrosion. Mineral corrosion 

was assessed through solid and liquid characterization.  Characterization of the solid 

mineral was performed through x-ray diffraction (XRD), scanning electron microscopy 

(SEM), and energy-dispersive x-ray spectroscopy (EDX). These methods provide 

information about the crystal structure, the surface morphology and film thickness, and 

the elemental composition, respectively. In addition to solid characterization, the solution 

was characterized or analyzed with nuclear magnetic resonance spectroscopy (NMR).  

 

𝐷𝑥 =
𝑅𝑥

𝐶𝑏𝑐𝑘𝑔𝑑@1235𝑐m−1
=

(
𝑃𝑥 − 𝑆𝑥 
𝑆𝑥+𝑃𝑥 

)

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
         Eq. 2.16 

 

 
𝑂𝑥 = 𝑅𝑥 − 𝐶𝑚𝑖𝑛 = (

𝑃𝑥 − 𝑆𝑥 

𝑆𝑥+𝑃𝑥 
) −𝐶𝑚𝑖𝑛  Eq. 2.17 

 
𝐵𝑥 = 

𝑂𝑥

𝐵𝑥 
  Eq. 2.18 
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2.3.1 X-ray Diffraction (XRD) 

 X-ray diffraction (XRD) is an instrumental technique used to analyze the crystal 

structure of a sample, which aids in identification and composition analysis. This 

technique takes advantage of the defined atomic arrangement found in solids, by studying 

the crystal structure to understand crystal orientations and phases.158 

 XRD bombards a solid sample with x-rays, these incident x-rays are then 

diffracted and reach the detector. The interaction of the x-rays with the sample can 

determine interplanar distance (d) between crystal planes, this interplanar distance serves 

as a fingerprint to identify each material. The interplanar distance is determined through 

Bragg’s law; this equation elaborates on the conditions that allow X-rays to be diffracted 

and undergo constructive interference. 158,159 

 

 

 

Equation 2.19 represents Bragg’s law, where λ describes the wavelength of the 

incoming X-rays, d is the interplanar distance or distance between crystal planes, θ is the 

diffraction angle (angle between the incident beam and the crystal plane), and n 

represents an integer or order of wavelength. In order for X-rays to be diffracted, θ must 

be varied to follow Bragg’s law so that constructive interference occurs to produce high 

enough signal intensity for detection. Fig. 2.17 is a simplified illustration of X-ray 

diffraction, where the spheres represent atoms. θ represents the angle between the 

incident beam and the crystal plane, where θ is also equal to the angle between the crystal 

 𝑛𝜆 = 2𝑑 sin 𝜃  Eq. 2.19 
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plane and the reflected beam. Therefore, 2θ is the angle between the incident and 

reflected beam; this is used to gather information about the crystal plane.160 

 Fig. 2.17 also illustrates how the crystal planes, x-ray beam, and θ can be used to 

establish a geometrical relationship to derive Bragg’s law. The X-ray beam hits the 

incoming sample and is reflected at different points, the X-ray beam which hits the 

crystal Plane 2 (atoms in this plane) travels a longer distance compared the X-ray beam 

which is reflected at Plane 1. The extra distance travelled by the second X-ray is 

represented by Eq. 2.20: 

 

 

 

Fig. 2.17 Schematic of a crystal structure where X-rays are diffracted, and geometry of 

the enlarged view is used to understand and derive the equation for Bragg’s Law. The 

interplanar spacing (represented in blue) is unique to each material.   
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 sin 𝜃 =   
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θ = 

 sin 𝜃 =   

  +   =   

𝑋𝑍 + 𝑍𝑌 = 𝑛𝜆   Eq. 2.20 
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In Fig. 2.17, the enlarged view shows the formation of two triangles that establish the 

relationships in Eq. 2.21 and 2.22. 

  

 

Equations 2.21 and 2.22 can then be combined into Eq. 2.19 to give Bragg’s law, as 

shown in Eq. 2.23  

 

 

  

 The basic instrumental design for XRD involves the use of an X-ray tube, to 

generate X-rays that are then collimated and directed toward the sample on the sample 

stage and then directed towards a detector. The sample stage and detector rotate and data 

is obtained at 2θ at varying angles of diffraction to observe different diffraction 

patterns.158 

2.3.2 Scanning Electron Microscopy (SEM) & Energy Dispersive X-Ray 

Spectroscopy (EDX) 

 Scanning electron microscopy (SEM) is an analytical instrument that allows for 

morphological and topographical studies. SEM can determine defect and non-uniform 

sites on samples and when this instrument is coupled with energy-dispersive x-ray 

spectroscopy (EDX), insight into the elemental composition is given.  

 Unlike a light microscope, in which a combination of light and optical lenses 

allows for magnification and enhancement of image resolution, SEM is a type of electron 

microscope, where electrons rather than visible light are used to enhance resolution. The 

general SEM instrumental design involves an electron gun (electron source), condensing 

 𝑑sin 𝜃 = 𝑋𝑍    Eq. 2.21 

 𝑑sin 𝜃 = 𝑍𝑌   Eq. 2.22 

 

𝑑 sin 𝜃 + 𝑑 sin 𝜃 = 𝑛𝜆   Eq. 2.23 
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lenses or electromagnetic lenses (control electron beam size), objective lense (controls 

distance from lens and samples or working distance), and detectors. This microscope is 

kept under vacuum to enhance image resolution and prevent damage. 161 

 Once the electron beam encounters the sample, there are various possible 

interactions between the electrons and the sample. The signals created by these 

interactions can be classified into five categories 1) transmitted electrons (elastic and 

inelastic electron scattering) 2) signals from backscattered, Auger, and secondary 

electrons 3) visible light 4) x-rays and 5) heat.162 The variety of these interactions comes 

from the electron beam scattering electrons from different depths of the sample. 

Secondary electrons are scattered electrons that are near the sample surface, caused by 

inelastic collisions. Backscattered electrons are scattered electrons that are found deeper 

in the sample, caused by elastic collisions. Secondary and backscattered electrons are 

used in image formation.161 

 As noted above, X-rays may be one of the byproducts of the interactions between 

the electron beam and the sample. X-rays are generated through inelastic collisions and, 

when the electron beam strikes the sample with sufficient energy to displace an electron, 

are found in the inner shell. This causes an electron from the outer shell to relax into the 

inner shell, and a photon in the x-ray region of the electromagnetic spectrum is released. 

The x-rays generated serve as unique markers for each element, because the energy 

associated with this is related to the atomic number through Mosley’s Law. These X-rays 

are used for elemental analysis, in energy dispersive X-ray spectroscopy (EDX) or X-ray 

energy-dispersive spectroscopy (EDS).162 EDX provides information about the elemental 
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composition through atomic or weight percent, and it can be used for elemental mapping 

to observe the distribution of elements on the surface.    

2.3.3 Nuclear magnetic resonance spectroscopy (NMR)   

 Nuclear magnetic resonance spectroscopy (NMR) is used for structural analysis 

and in combination with other analytical techniques may be used for positive 

identification of a molecule.163 The working principle is based on the spin of an atom’s 

nucleus or nuclear spin. Analysis with NMR requires that atomic nuclei have either an 

odd number of protons and neutrons or both, since these nuclei would have spins of ½ 

and have an electromagnetic field.164 Once the sample is prepared, a nucleus of interest is 

then chosen for analysis (e.g., 1H, 13C, 31P, and 14N). The sample is sent to the main 

compartment of the NMR, which contains a strong magnet. The nucleus of interest 

interacts with the magnetic field of the strong magnet; the spin of the nucleus may align 

with or opposite of the magnetic field of the strong magnet. A thermodynamic preference 

exists for alignment with the magnetic field instead of against, and this preference is 

amplified as the strength of the magnet increases.164 

 The atomic nuclei are irradiated with a particular radio frequency; this particular 

frequency causes resonance (i.e., an increase in amplitude). This radio frequency (also 

known as a pulse) causes the number of nuclei aligned with and against the magnetic 

field to be equal. Once this pulse ends, there is a release of energy from the nuclei in the 

form of radio frequency. The frequency emitted may differ in parts per million from the 

original frequency applied. The difference in these two frequencies is known as a 

chemical shift. Chemical shift is dependent upon temperature, pH, magnet strength, and 
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concentration. A spectrum is obtained from different frequencies within the free 

induction decay (FID), which is the frequency strength.164 

 The nuclei of interest for this project are phosphorus-31 and hydrogen-1. Both 

coupled and decoupleD-spectra were collected for phosphorus. Coupled mode refers to 

the splitting of peaks on the spectra, caused by neighboring atoms of that specific nuclei; 

in decoupled mode splitting of frequency is not possible and peaks in the spectra appear 

as singlets (i.e., single peaks).164  
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CHAPTER 3. SYNTHESIS, CHARACTERIZATION, & OPTIMIZATION OF HA 

HA needs to be synthesized as a thin, uniform film on a conductive metal surface 

for surface analysis via PM-IRRAS. In IRRAS experiments light is reflected at a grazing  

incidence angle from a conductive surface. The light must induce a vibrational motion 

that changes the dipole moment of the adsorbed molecule. In order to obtain a strong 

signal, the film thicknesses must be less than 2.5 μm, and the underlying substrate must 

be a strong infrared reflector. A uniform film is desired because of the decreased 

complexity foR-spectral analysis, meaning fewer binding sites for adsorbed molecules 

(urea-rich solvents). Copper was the initial metal substrate because of its strong infrared 

reflectivity and high conductivity, which is important for IRRAS. As a preliminary 

procedure, synthesis of HA was optimized on Cu foils and this same method was then 

used for Cu discs. The experimental setup and design for PM-IRRAS required Cu discs 

with a ¾” diameter, so the sample could be attached to a threaded rod and placed in the 

liquid-solid cell. Increase in HA film thickness was observed with visual inspection, PM-

IRRAS analysis, and XRD analysis. As synthesis was optimized to produce ultrathin 

films, characterization with XRD was not possible. Therefore, these ultrathin phosphate 

films cannot be verified as HA, although once the same synthesis method is used but 

thicker films are produced, than HA is confirmed by XRD. Common calcium phosphate 

phases include dicalcium phosphate dehydrate or brushite CaHPO4⋅2H2O, dicalcium 

phosphate CaHPO4, octacalcium phosphate Ca8H2(PO4)6⋅5H2O, and amorphous calcium 
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phosphate Ca9(PO4)6xH2O. While Ca and P are confirmed by EDX, it may be possible for 

HA to exist as well as other calcium phosphate phases.165 

3.1 Influence of Electrochemical Parameters on HA films 

To increase the infrared signal intensity for PM-IRRAS before electrodeposition, Cu 

foils and disks were mirror-finished. A mirror-finish was achieved with the use of a 9 μm 

polycrystalline diamond suspension (MetaDi Supreme from Buehler), UltraPad PSA, 

TriDent PSA, a 3 μm polycrystalline diamond suspension (MetaDi Supreme from 

Buehler), and MicroCloth, PSA from Buehler.  

Several parameters affecting electrochemically deposited HA films have been tested, 

with the aim of acquiring thin, uniform, and reflective films. Parameters with a deep 

impact on these desired features include temperature, concentration of the electrolyte 

solution, additives (e.g., NaNO3), scan rate, number of cycles, and voltage range (i.e., 

potential). Deposition was completed by cyclic voltammetry with baseline parameters of 

five cycles, a potential range of 0.0 to -1.7 V, 60 ± 5 oC, pH molar solution adjusted to 

5.77, an additive of NaNO3, and a scan rate of 5 mV s-1. These conditions were chosen 

primarily based on Ref. 134, which produced films that seem most similar to the desired 

specifications for out PM-IRRAS experiments. A selection of initial experiments are 

listed in Table 1.  
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Table 1. Electrochemical Deposition Conditions for HA/Cu Samples  

SAMPLE 
TEMPERATURE  

(
O
C) 

SCAN 

RATE  

(mV s
-1

) 

MAX 

CURRENT 

 (mA) 

POTENTIAL 

(V) 
PH CYCLES 

11
a
 60 – 65 5. 10. 0.0 - -1.7 4.628 5

a
 

12
a
 58 – 62 5. 10. 0.0 - -1.7 5.811 5

a
 

13
a
 56 – 60 5. 10. 0.0 - -1.7 5.771 5

a
 

21 60 – 65 5. 10. 0.0 - -1.7 5.774 5 

22 61 – 65 5. 10. 0.0 - -1.7 5.773 5 

23 63 – 65 5. 10. 0.0 - -1.7 5.770 5 

24 56 – 64 10. 100. 0.0 - -1.6 5.780 5 

25 60 – 64 10. 10. 0.0 - -1.6 5.814 3 

26 59 – 60 10. 10. 0.0 - -1.6 5.814 3 

27 61 15. 10. 0.0 - -1.6 5.690 3 

28 62 – 63 20. 10. 0.0 - -1.6 ~5-6 3 

29 58 – 61 25. 10. 0.0 - -1.6 ~5-6 3 

30 59 25. 10. 0.0 - -1.6 ~4 3 

31 58 – 61 25. 10. 0.0 - -1.6 5.744 5 

32
b
 65 25. 10. 0.0 - -1.6 5.780 3 

33
b
 60 25. 10. 0.0 - -1.6 5.442 2 

34
b
 59 – 60 20. 10. 0.0 - -1.6 ~5-6 2 

36
b
 58 – 59 25. 10. 0.0 - -1.6 ~5-6 2 

37
b
 60 – 62 30. 10. 0.0 - -1.6 ~5-6 2 

38
b
 58 – 60 30. 10. 0.0 - -1.6 ~5-6 2 

a indicates NaNO3 was added, b indicates 2% (w/w) H2O2 was added.  
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Based on visual inspection (HA films on Cu foils are represented in Fig. 3.1), optimal 

films for PM-IRRAS studies are achieved with electrochemical conditions of: 

approximately 58-60℃, a high scan rate (25-30 mVs-1), decreased number of cycles (3-4 

cycles), and a decreased potential. As the temperature increases, films become thicker 

and are not as conducive to surface analysis with PM-IRRAS. The temperature of the 

molar solution during electrochemical deposition affects the mass of HA deposited onto 

the WE. According to findings by Thanh and co-workers, there is an increase in film 

thickness (HA mass) as temperature increases from 60 to 70℃, while the thickness stays 

consistent from 71-85℃; however, the thickness is still much higher compared to 60℃ 

(~9 mg vs. 4.5 mg).140 Temperature affects the rate of reaction and ion diffusion rate, As 

temperature increases, there is a decrease in HA solubility, this allows for a faster growth 

rate on the WE or copper substrate rather than formation of HA in the molar solution, 

there is a cutoff point past 70℃, where HA is formed in solution due to a high diffusion 

rate. To adequately control temperature changes during synthesis, an oil bath was used. 

Determination of HA film thickness by visual inspection and PM-IRRAS analysis is 

illustrated in Fig. 3.1, where infrared signals for corresponding samples are also listed. 

Fig. 3.1 includes a picture and infrared signal for a mirror-polished Cu foil, this is to 

illustrate that the highest infrared signal achievable (at that time for the system in place) 

was 10.5. An optimal infrared signal from PM-IRRAS would be close to the value of 

10.5, as long as HA was still detected on the surface. Fig. 3.1 indicated that a decrease in 

the number of cycles allowed for thinner films although there is a balance in the number 

of cycles used; a decreased number of cycles allows for thinner films but also decreases 

film uniformity. For HA films on Cu foils, films became thinner as cycles were decreased 
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from 5 to 3, but decreased in uniformity with 2 cycles. As illustrated by Sample 23 and 

26 (Fig. 3.1), cycles were decreased from 5 to 3 to achieve a thinner film, which was 

confirmed visually and with PM-IRRAS analysis. Sample 26 has a higher infrared signal 

of 5.5 compared to a lower infrared signal of 0.8 for Sample 23, indicating that Sample 

26 is a thinner film. In order to increase film uniformity and achieve a thin film, the 

number of cycles may be reduced and the scan rate increased. Sample 23 had a scan rate 

of 5 compared to 25 mVs-1 for sample 29 and 5 cycles rather than 3; Sample 29 has a 

significantly higher infrared signal of 6.9 rather than 0.8.  

Infrared studies of the HA surface, corresponding to Fig. 3.1 are illustrated in Fig. 

3.2 with corresponding IR signals of: 3.3, 0.8, 0.3, 5.5, 2.6, and 6.9. These preliminary 

studies were conducted in air (before establishing a purge) anD-spectra were collected for 

only the HA surface by subtracting the Cu surface. Spectral peaks confirm the presence 

of HA, specifically peaks at 1142, 1140, 1050, and 1030 cm-1 indicate P-O asymmetric 

stretches, and the feature at 960 cm-1 is attributed to P-O symmetric stretches. Hydroxyl 

groups in HA correspond to broad stretches from 3500 to 3200 cm-1. Since a purge had 

not yet been established the peak at 2350 cm-1 confirms the presence of CO2 and peaks at 

approximately 1650 cm -1 suggest residual gas-phase water.  
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Fig. 3.1 Bare mirror polished cu foil and HA 

films deposited onto Cu foils, sample names are 

listed above. The number below the sample 

name is the infrared signal intensity for each 

film, a high signal intensity with detection of 

HA is desirable.  

 

Mirror-Finished 
Copper

10.5 

Sample 21
3.3 

Sample 23 
0.8

Sample 24
0.3

Sample 26 
5.5

Sample 27
2.6

Sample 29
6.9
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Fig 3.2 PM-IRRAS baseline correcteD-spectra of HA thin films in air at 298 K. 

Spectra are referenced to a single-beam spectrum of the Cu surface. A) 4000-725 

cm-1 B) 4000-2000 cm-1 C) 2000-725 cm-1. 

 

 

 

A) 

B) 

C) 
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As discussed in section 2.1.3, XRD gives information about crystallite size and 

percent crystallinity of the phase.  XRD data shown in Fig. 3.3 contains peaks at 

approximately 26°, 32°, and 53° which coincide with HA crystal planes (002 and 211 

crystal plane).140,166 Peaks at approximately 43° and 50° correspond to Cu. An underlying 

challenge with characterization was presented once thin film synthesis was optimized. 

Thinner HA films produced less intense HA peaks suggesting a smaller crystallite size, 

this is illustrated in Fig. 3.3 in Sample 11 compared to 31, where HA peaks are less 

intense. Fig. 3.3 also suggests that brushite was on the copper in samples 27 and 31, since 

there is a peak at 12°.166 EDX was used to ensure the presence of Ca and P on the metal 

substrate.  

 

 

 

 

 

 

 

 

 

EDX analysis provided information about elemental composition. Analysis 

confirmed the presence of O, Ca, P, and Cu. Fig. 3.4 has EDX information for Sample 

31, and the atomic percentage for elements found in HA as well as the underlying metal 

 

Fig. 3.3 XRD of HA/Cu samples with decreasing 

thickness. Sample numbers (see Table 1) are listed to 

the right of each spectrum.  



 

60 
 

substrate. There are trace atomic percentages for F, N, and Si corresponding to 1.47%, 

2.15%, and 0.09%. The detection limit for EDX is 0.1 – 1% for atomic %, suggesting that 

the actual presence and amount of these trace elements is not certain. An SEM image of 

Sample 31 at 1 mm is also present in Fig. 3.4, there is coverage of the entire Cu substrate 

based on the trace atomic % of 0.38 Cu. The SEM image for Sample 31 at 1 mm 

indicates a much more uniform film at lesser magnification. In contrast, at 500 μm this 

film appears to be porous and have areas with uneven distribution of HA, in this image, 

the center appears to have more HA, which is indicated by flaking (Fig. 3.5).  

 

 

Fig. 3.4 SEM image on the left and corresponding EDX atomic % on the right for sample 

31. Electrochemical deposition conditions for this sample are listed in Table 1.  

Formula Atom %

O 62.18

Ca 17.97

P 12.56

C 3.21

N 2.15

F 1.47

Cu 0.38

Si 0.09

Total 100.00
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3.2 Influence of Additives, Temperature, and pH 

To further optimize films, the role of additives and pH in the molar solution 

(0.0168 M Ca(NO3)2⋅H2O and 0.0100 M NH4H2PO4) were studied. Additives 

incorporated into the molar solution at one point or another include: sodium nitrate 

(NaNO3), hydrogen peroxide (H2O2), and sodium dodecyl sulfate (SDS, 

CH3(CH2)11SO4Na).  These additives were not added all at once, but individually and 

SEM was used to study their effect on film morphology and topography.   

 Sodium nitrate was initially added to increase the ionic strength of electrolytes 

found in the molar solution.140 This additive was only incorporated into the first three HA 

samples, since it decreased film uniformity and created uneven areas with more HA 

growth (Fig. 3.6).  The pH of the molar solution was also investigated. The pH of the 

solution with no adjustments was approximately 4.4 and was pH adjusted to 

approximately 5.6-5.7 with NH4OH. When no pH adjustment occurred, HA films 

 

Fig. 3.5 SEM image for sample 31 at 1 mm and 20 μm. 

Electrochemical deposition conditions for this sample are listed in 

Table 1.  
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decreased in uniformity, as illustrated in Fig. 3.7. Likewise, when pH of the plating 

solution was adjusted to ~5.7 (a value chosen based on Ref 140) a precipitate formed, but 

this precipitate would go back into solution if the plating solution was continuously 

stirred. This precipitate was analyzed with FTIR-ATR anD-spectra obtained indicate that 

this precipitate is HA.   

 

 

 

 

 

 

 

 

SEM images of HA films indicate rod-like structures (Fig. 3.8), and film 

thickness was initially estimated with the use of Cu foils, creating a cross section. The 

film in Fig. 3.8 was estimated to have a cross-section of ~25 μm, but creating a cross-

section for thinner films and Cu disks was not feasible. To transform the rod-like 

structures into a more desirable morphology, H2O2 was added. Plate-like structures are 

better suited for surface analysis because they presumably have fewer types of binding 

sites and, therefore, better infrared peak resolution. Crystal morphology was altered with 

H2O2 concentrations of 2%, 4%, 6%, and 8% (w/w). These concentration values were 

 

Fig. 3.6 An image of 

Sample 13 indicates 

that NaNO3 decreased 

film uniformity.  
 

Fig. 3.7 SEM image of HA/Cu film 

with no pH adjustment.  
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chosen based on work done by Thanh et al.140 The H2O2 concentrations used for HA film 

synthesis are presented in Fig. 3.9 and magnification is from 50 to 10 μm.   

Morphological changes at 2% indicate plate-like structures, present even at 10 

μm. Additionally, 4% and 6% concentration have different morphologies, Thanh et al. 

observed HA films at 200 nm and described blade-like structures at 4% and petiole-like 

structures at 6%.140 For our experiments, the highest magnification possible while 

maintaining adequate resolution was at 10 μm. Despite this, panel G of Fig 3.9 at 10 μm 

shows rounder and more petiole shaped features, compared to panel F which appears to 

be less round and contains small spikes.  

 

 

 

 

 

Fig. 3.8 SEM image of HA/Cu sample 12 A) surface B) cross-section. Electrochemical 

deposition conditions for this sample are listed in Table 1. 

A) B)
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Despite morphological modification producing plate-like structures with 2% 

(w/w) H2O2, this film had decreased uniformity compared to 0% (w/w) H2O2 (illustrated 

in Fig. 3.10). The SEM image at 200 μm shows the presence of holes and is a less 

uniform film compared to a film with no H2O2. Therefore, permanent addition of H2O2 

was not implemented.  

 

 

 

Fig. 3.9 SEM images of HA/Cu films, A-C have a magnification of 50 μm and D-F 

images have a magnification of 10 μm with H2O2 (w/w) 2% (A,D), 4% (B,E), 6% (C,F) 

respectively.  

 

A B C

D E F
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To decrease film porosity and increase film uniformity, the surfactant sodium 

dodecyl sulfate (SDS, CH3(CH2)11SO4Na) was added to the plating solution (see Fig. 

3.11). The surfactant was added in concentrations of 0.80 mM and 1.80 mM, and the role 

of pH was investigated. Previous research done by Yang et al. electrodeposited Cu2O 

films on FTO glass substrates and investigated the effect of SDS concentrations on 

morphology and conductivity.167 Research done by this group found that addition of SDS 

has no effect on the crystal morphology of Cu2O, rather it affects the growth rate. This 

research found that with a high concentration of SDS, the number of crystals formed 

decreases but their size increases. When SDS was added to the plating solution, uneven 

growth was observed with both 0.80 mM and 1.80 mM but uniformity seemed to increase 

when the plating solution was pH adjusted. Overall the physical appearance of HA was 

much better without SDS.  

 

 

   

Fig. 3.10 Image of HA/Cu 2% H2O2 (w/w) sample (left), SEM image at 10 mm (middle), 

and SEM image at 200 μm.  
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Fig. 3.11 Image of HA/Cu sample with 0.80 mM SDS with pH adjustment 

of 5.80 (A), 1.80 mM no pH adjustment ~4.3 (B), and 0.80 mM no pH 

adjustment ~4.3 (C).  
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CHAPTER 4. REACTIVITY STUDIES 

 

4.1 Reactivity of Copper 

After optimizing HA synthesis on copper substrates (i.e., foils and disks), 

preliminary testing was conducted by placing an HA/Cu disk into the liquid-solid cell and 

adding UAFW drop-wise to the surface. This resulted in an immediate and unexpected 

blue color change on the surface, indicating an undesirable side reaction. It became 

evident that the underlying copper substrate had reacted with the solution (Fig 4.1).  

 

 

 

 

 

 

To determine if the reaction and subsequent color change were caused by the 

copper substrate, rather than HA, several control experiments were conducted (see Table 

4.1). These reactivity experiments were performed with the help of undergraduate Anna 

Nastase. Experiments involved adding HA powder (Acros Organics), UAFW, and a 

mirror-polished Cu foil into a scintillation vial. These experiments resulted in a blue color 

change for all vials, suggesting that HA could have played a role in this blue color 

 

Fig. 4.1 Image of HA/Cu in liquid-solid cell after 

interaction with UAFW.  
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change. However, an additional experiment containing no copper foils did not result in a 

color change.  

 

 

 

 

 

 

 

 

 

 

 

Subsequent experiments focused on components of UAFW, to better understand 

which component reacted with copper oxide to produce a color change, since other urea-

rich solvents could have been used (e.g., urea, acetamide, and ammonium nitrate, 

UAcAN). 1500 μL of urea and water (UW), ammonium formate and water (AFW), and 

water were added to three separate clear plastic test tube vials each containing a HA/Cu 

sample. After 20 minutes had elapsed, the vial with AFW produced a blue color change, 

while the remaining vials were clear. The ammonium formate in UAFW reacted with 

copper oxide to produce a blue color change (see Fig. 4.2).  

 

 

Table 4.1 Summary of control experiments for UAFW, Cu, 

and HA.  

UAFW 

(μL) 

HA 

powder 

(g) 

Mirror-

polished  

Cu foils 

Blue 

color 

change 

observed 

Mirror-

polished  

Cu foils 

Blue 

color 

change 

observed 

1500 0.2 yes yes no no 

1500 0.4 yes yes no no 

1500 0.6 yes yes no no 

1500 0.8 yes yes no no 

1500 1.0 yes yes no no 
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4.2 Mitigation Strategies 

4.2.1 Alternative Solvents 

Initial mitigation strategies involved using alternative prebiotic solvents and 

increasing HA film thickness (increased film thickness is not favorable for surface 

analysis). The original aim of this study was to understand if phosphorylation of organic 

substances was primarily surface rather than solution based. Therefore, solvents used 

needed to be both prebiotic and allow for a significant yield of phosphorylated species. 

Alternative solvents were chosen based on previous research on urea-rich solvents 

interacting with HA.22 

Experiments involved alternative solvents replacing ammonium formate with 

acetamide in the urea-rich solution. A HA/Cu sample and 1500 μL of acetamide and 

water were added to a plastic test tube vial; this produced no color change within the first 

week; however, after eleven days a blue color change was observed. Other solvents tested 

included ammonium nitrate, with the same experimental conditions as mentioned above 

 

Fig. 4.2 HA/Cu samples with the left vial containing 

water, middle vial is urea and water, and the right 

vial contains ammonium formate and water. All 

control experiments were performed at room 

temperature. 
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and at room temperature; this solution became bright blue as well. Ammonium nitrate 

produced a blue color change after four days, compared to ammonium formate which 

produced a color change within 20 minutes of the experiment. This may be due to a 

stronger affinity of the nitrate anion to ammonium compared to weak affinity to formate. 

These findings suggested that ammonium and copper oxide interactions produced the 

blue color change. This hypothesis was tested by reacting ammonium hydroxide and 

water (1500 μL) with an HA/Cu sample, resulting in an immediate blue color change.  

A mechanism for the reaction of copper oxide and ammonium formate was 

proposed by Anna Nastase, illustrated in Fig 4.3. In Step 1 of the proposed mechanism, 

ammonium formate dissociates into solution to produce a formate and ammonium ion. 

Copper (II) oxide then reacts with two ammonium ions to undergo a proton exchange 

twice, this proton exchange allows for water to become a leaving group. Once water 

leaves, a copper ion and two ammonia compounds are left and Step 3a depicts the 

reaction between a copper ion with four ammonia compounds to form a copper ammonia 

complex.    
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Based on previous research by Eduard Schweizer, the reaction between ammonia 

and copper oxide produces and is characterized by a dark blue color. He discovered this 

copper ammonia complex in the 19th century as [Cu(NH3)4](OH)2 or tetraamine 

copper(II) hydroxide, now known as Schweizer’s reagent.168 Substances such as 

acetamide and ammonium compounds (i.e., ammonium formate, ammonium nitrate, and 

ammonium hydroxide) may form ammonia in solution. Alternatively, UAFW was pH 

adjusted to slightly more acidic and basic conditions to pHs of 4, 5, and 9 in an attempt to 

limit or slow down this reaction (UAFW without adjustment has a pH of ~7). Acidic 

solutions experienced a slower color change, compared to the basic solution of pH 9, but 

the color change still proceeded (Fig. 4.4). A possible explanation for increased speed of 

this color change reaction for pH adjusted solutions, may be based on the reaction of 

ammonia and water (Fig. 4.5). An increase in hydroxide ions, shifts the equilibrium to the 

reactants side, causing an increase in ammonia and ammonia reacts with copper or metal 

oxides to produce a color change. Acidic solutions may shift reaction equilibrium (Fig. 

4.5) to the right and produce ammonium rather than ammonia. 

 

Fig. 4.3 Proposed reaction mechanism for ammonium formate reacting with HA/Cu 

foils. This mechanism could explain the blue solution. Image Credit: Anna Nastase.  
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4.2.2 Alternative metal substrates 

 Alternative solvents tested were chosen based on phosphorylation yields with 

HA22 and all solvents contained ammonia or amide that would react with copper oxide. 

Since surface analysis (i.e., PM-IRRAS) was conducted with a liquid-solid cell explicitly 

machined for copper disks with a diameter of 0.75 inches, using an alternative metal 

would require purchasing this material and machining it to fit the liquid-solid cell.   

 

Fig. 4.4 Image of UAFW (pH~7) with 

HA/Cu samples, pH adjusted (from 

left to right) to ~9, ~5, and ~4.  

 

Fig. 4.5 Reaction of ammonia and water.  

Image Credit: Anna Nastase. 
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Therefore, alternative solvents were investigated first rather than alternative metal 

substrates.  

Reactivity experiments of metal substrates were performed at 65°C and not room 

temperature, since the original objective involved in situ surface analysis at elevated 

temperatures (i.e., 65 and 85°C). (n.b., Reactivity of copper was apparent at room 

temperature, so less focus was placed on its reactivity at elevated temperatures.)  

 Metals tested first included iron, due to its high reflectivity in the infrared region 

and stainless steel (ss) because of its stability. Experiments with these metals involved 

electrodeposition of HA, illustrated in Fig. 4.6. After electrodeposition, preliminary 

testing with PM-IRRAS was conducted, and the infrared signal was fairly low and 

difficult to achieve with no established mounting structure. These samples were also 

characterized with SEM/EDX, but rather than electrodepositing HA on various metals, 

quicker and more time efficient experiments moved to simply reacting the metals with 

UAFW at 65°C. Iron, stainless steel, and nickel were reacted in the conditions mentioned 

above, depicted in Fig. 4.7. Reactivity was assessed through physical observations (i.e., 

color change) and quantified through EDX (as suggested by Dr. Poyraz). Quantification 

was performed with EDX because of its accessibility as a departmental instrument. EDX 

experiments were referred to as “drip pan experiments,” because the post-reacted solution 

of each metal was dried down at 65°C in aluminum sample pan lids (normally used for 

TGA experiments). This dried down product was then analyzed with EDX to determine if 

any metal ions were detectable in a significant amount. No certified standards were used 

for EDX quantification, and the detection limit of EDX is generally 0.1% wt.169 
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EDX analysis of “drip pan experiments” for iron and stainless steel are shown in 

Table 4.2 and 4.3 below. Table 4.2 confirms the presence of iron in solution, with an 

atomic percentage of 7.79% and weight percent of 24.38%. Likewise, Table 4.3 confirms 

the reactivity of stainless steel, because Cr, Fe, and Ni were detected with weight 

percentages of 2.81%, 8.33%, and 1.05% and these elements are prevalent in stainless 

steel.  

Afterward, aluminum was tested as an alternative and a flame atomic absorption 

spectrometer (AAS) rather than EDX was used to quantify aluminum ions in solution, 

because “drip pan experiments” were conducted on an aluminum pan, making 

quantification of aluminum ions difficult with EDX. The AAS is overseen by Dr. Koether 

and experiments for aluminum were conducted with her assistance and permission. An 

aluminum pan was reacted with 1500 μL of UAFW at 65°C. An external standard 

calibration method was chosen and a calibration method was developed using three 

 

Fig. 4.7 Image, from to left to right of iron, 

stainless steel, and nickel in UAFW. These 

experiments were heated to 65°C and all metals 

reacted in solution with ammonia.  

Fig. 4.6 Image of 

HA/Fe (left) and 

HA/SS (right).  
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known aluminum standard solutions (from a 1000 ppm aluminum atomic absorption 

spectroscopy standard from Fischer Chemicals) with concentrations of: 50 ppm, 100 

ppm, and 150 ppm. A 1:10 unknown solution was prepared, ~1000 μL of the reacted 

UAFW solution was diluted to 10 mL in a volumetric flask. Calibration standards are 

plotted in Fig. 4.8, and this linear function is represented by the equation: y = 0.0017x + 

0.0059. An absorbance value of 0.203 was obtained for the unknown solution and the 

solution was determined to have a concentration of 117 ppm Al.  

 

 

 

 

 

 

 

Table 4.2: Elemental Analysis by 

EDX of reacted product on an 

aluminum TGA pan for iron.  

Element Weight % Atom % 

C 14.75 ± 0.10 21.92 

N 20.93 ± 0.39 26.67 

O 37.81 ± 0.35 42.19 

Al 2.15 ± 0.02 1.42 

Fe 24.38 ± 0.09 7.79 
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Table 4.3. Elemental Analysis by EDX of 

reacted product on an aluminum TGA pan 

for stainless steel.  

Element Weight % Atom % 

C 16.59 ± 0.35 22.53 

N 24.34 ± 1.69 28.34 

O 41.43 ± 0.94 42.24 

Al 5.12 ± 0.11 3.10 

Si 0.32 ± 0.04 0.19 

Cr 2.81 ± 0.09 0.88 

Fe 8.33 ± 0.27 2.43 

Ni 1.05 ± 0.11 0.29 

 

Fig. 4.8 Calibration plot using 50, 100, and 150 ppm (mg/L) of 

aluminum standard solutions for atomic absorption flame 

spectroscopy.  
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 Since iron, stainless steel, aluminum, and nickel experienced a color change and 

released metal ions in solution when reacted with UAFW, the next metal tested was gold. 

Gold foils are more costly than gold-plated flat mirrors (normally used for optics), so this 

mirror (uncoated from Thorlabs) was reacted with 1500 μL of UAFW at 65°C. A “drip 

pan experiment was conducted with the solution, and the dried down product was 

analyzed with EDX, represented in Table 4.4. EDX analysis indicated no release of Au 

ions into solution and showed small quantities (under 0.1 wt%) of Cl, K, and Ca. The 

presence of Fe was most likely due to contamination of glassware. A summary of 

analytical techniques and observations for metal substrate reactivity with UAFW is found 

in Table 4.5. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.4 Elemental Analysis by EDX of reacted 

product on an aluminum TGA pan for an Au flat 

mirror. 

Element Weight % Atom % 

C 16.74 ± 0.13 24.54 

N 17.46 ± 0.34 21.96 

O 23.78 ± 0.19 26.18 

Al 41.52 ± 0.15 27.11 

Si 0.12 ± 0.01 0.08 

Cl 0.03 ± 0.01 0.01 

K 0.02 ± 0.00 0.01 

Ca 0.09 ± 0.01 0.04 

Fe 0.24 ± 0.02 0.08 
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4.3 Synthesis on Gold 

 After the gold-plated flat mirror was determined to be unreactive at 65°C, the next 

step involved electrodeposition of HA onto this substrate. The gold-plated flat mirror had 

a diameter of 1” and was too large for the three neck, round-bottom flask (24/40 joint 

size), so a new flask was acquired (side joints 24/40 and one 34/45 center joint). The 

order of the electrodes was altered, since the largest opening was the center joint, so the 

WE (Au) was placed here, which might have an effect on the accuracy of the potential 

reading. An alligator clip was attached to the flat mirror, and only half of the mirror was 

Table 4.5. Summary of observations and analytical techniques used for 

UAFW reacted solutions with several metal substrates. Image Credit: 

Anna Nastase.  

Metal 

substrates  

Physical 

Observations  

Analytical 

Method 
Results  

HA/Copper 

foil 

Dark blue 

solution with 

light blue 

precipitate  

EDX 
Cu in solution 

 

Nickel foil 

Translucent, 

turquoise 

solution 

N/A N/A 

Stainless steel 

foil  

Translucent, 

slate grey 

solution  

EDX 
Cr, Fe, Al and 

Ni in solution 

Iron foil 

Opaque rust red 

solution and 

precipitate  

EDX Fe in solution 

Aluminum 

pan 

Translucent, 

pale-yellow 

solution 

Flame AA, 

EDX  
Al in solution 

Gold-plated 

mirror  

Colorless 

solution  
EDX 

No gold in 

solution 
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submerged into the plating solution during synthesis for preliminary testing. Synthesis of 

an ultrathin HA film onto this gold-plated mirror was achieved, and the initial film 

produced on this substrate is depicted in Fig. 4.9. Electrochemical parameters, such as 

scan rate and potential remained the same as for copper.  

 

 

 

 

 

 

 

Initial synthesis of HA had limited surface coverage since only half the gold-

plated mirror was coated, but coverage improved over time with repetition (Fig. 4.10 and 

Table 4.6). These films were characterized by SEM/EDX and PM-IRRAS; EDX analysis 

of an HA/Au film is listed in Table 4.7 and confirms the presence Ca and P. SEM images 

indicate that films are uniform and porous, a comparison of HA films on Au and Cu is 

represented in Fig. 4.11. Advantages of gold-plated flat mirrors compared to copper 

include an increased infrared signal intensity for PM-IRRAS, ~12 for gold and ~9 for 

copper, which may be due to a larger surface area (i.e., 1 inch compared to 0.75 inches). 

A higher signal intensity with the bare HA surface is beneficial since signal intensity will 

decrease once a solvent interacts with this surface. Additionally, gold is more difficult to 

oxidize so it remains reflective for a longer period of time, while copper disks required 

constant mirror polishing to maintain their reflective finish.  

 

Fig. 4.9. Image of gold-plated 

flat mirror (left) and an 

ultrathin HA film on the gold-

plated flat mirror (right).  
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Fig. 4.10 Image of HA films on gold-plated flat 

mirrors show improvement in surface coverage. 

From left to right: samples W, AA, and AG. 

Synthesis conditions are listed below in Table 4.5.  

Table 4.6. Synthesis conditions for HA/Au samples, 

all had a potential of 0 to -1.6 V.  

Sample W AA AG 

pH 5.653 5.413 5.725 

Scan rate (mVs-1) 25 30 25 

No. Cycles 4 4 4 

Temperature (°C) 58-61 59-64 57-58 
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Table 4.7. Elemental Analysis by EDX of 

HA/Au sample AF.a  

Element Weight % Atom % 

C 2.71 ± 0.07 6.43 

O 36.90 ± 1.29 65.71 

Si 7.05 ± 0.08 7.15 

P 7.18 ± 0.24 6.61 

Ca 12.67 ± 0.11 9.01 

Cr 0.61 ± 0.04 0.33 

Au 32.88 ± 0.64 4.76 
a Synthesis conditions: pH: 5.649, scan rate: 25 

mVs-1, no. cycles: 4, temperature: 57-58, and 

potential: 0 to -1.6 V. 

 

Fig. 4.11 From left to right, SEM images of HA/Cu Sample 31 and 

HA/Au sample AF. Electrochemical deposition conditions for these 

samples are listed in Table 1 and Table 4.6. 
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CHAPTER 5. UREA, AMMONIUM FORMATE, AND WATER ON HA 

 Once a synthesis protocol was developed, and the experimental setup was 

optimized for HA, reactivity studies were performed. The aim of these experiments were 

to investigate the activation of phosphorus on phosphate minerals and understand the 

molecular interactions of UAFW with HA.  The overall aim was to observe structural 

changes on the mineral surface as a function of time. Given the number of chemical 

species involved, understanding the complex spectra that describes the interactions 

between UAFW and HA is challenging. In particular, spectral features may overlap or be 

attributable to more than one compound.  

To better understand and assign spectral features of UAFW on HA, HA was 

reacted at room temperature (298 K) with several different combinations of the solvent: W 

(water), UW (urea and water in a 1:4 ratio), AFW (ammonium formate and water in a 1:2 

ratio), and UAFW (urea, ammonium formate and water in a 1:2:4 ratio). The total reaction 

time was four hours, and spectra were collected at one hour intervals, when the surface 

was wet (i.e., within 5 minutes of removing from the solution) and dry (i.e., 45 minutes 

after removing from solution). The experimental setup for the reactivity studies is shown 

in Fig. 5.1.  
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Most of the spectra presented here are dry spectra, because they are easier to 

interpret. Wet surface spectra were more difficult to analyze because the spectra had to be 

acquired quickly, before the purge could be re-established, and the wet mineral surface 

was actively evaporating as the spectra was collected. Therefore, gas-phase CO2 and H2O 

signatures in the spectra are significant. Additionally, the liquid layer on the wet surface 

absorbed infrared light, lowering the overall signal intensity.  

Supporting information for spectral analysis and mineral corrosion for the reaction 

between UW, AFW, and UAFW was acquired prior to and after reaction by SEM/EDX 

and PM-IRRAS, while NMR was solely used for post-reaction analysis of the supernatant. 

SEM/EDX characterization was performed with the help of undergraduate Christian Luda. 

NMR of the reacted solution, excluding water, was collected at the same one hour 

intervals when infrared spectra were acquired. NMR was used to understand the time 

frame for phosphate release into solution. (n.b., Samples were not centrifuged or filtered 

since the solution remained clear.) 

  

 

 

 

 

 

 

 

Fig. 5.1 Experimental 

setup for reactivity 

studies.  
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5.1 Data Analysis of Water (W) on HA at 298 K 

 As discussed in Chapter 2, there are numerous ways to present spectral data. PM-

IRRAS spectra of H2O adsorbed to HA, are presented as R-spectra in Fig. 5.2. Both R and 

O-spectra contain a spectrum of the mineral surface before reaction (background), which 

is significant in illustrating peaks solely contributed by HA.  

Fig. 5.2 presents R-spectra from 4000-750 cm-1 with peaks at 3612, 3551, and 

3488 cm-1 observable on HA even before reacting with water. After reaction, these peaks 

appear to decrease in intensity. If these peaks were solely from the contribution of 

moisture, they would increase in intensity and grow as they react with water over time. 

Because this is not the case, these peaks are attributed to hydroxyls in or on the mineral 

itself. These hydroxyl groups from the mineral are most likely in different orientations 

since their frequencies vary. A free hydroxyl group has a frequency of ~3696 cm-1, when 

adsorbed to a surface the frequency is going to be red shifted.170 Since HA was not 

confirmed by XRD, rather Ca, P, and O were confirmed by EDX various calcium 

phosphate phases could have been present. Spectral features from 3612 to 3488 cm-1 are 

attributed to hydroxyl groups within HA, the shift in frequencies may be due to different 

connectivities due to the presence of various calcium phosphate phases. The more bonds 

an oxygen atom makes to other atoms, the more electron density is drawn away from the 

OH bond. This causes a decrease in frequency for the hydroxyl group (i.e., it is red 

shifted).171,172 The region from 1250-950 cm-1 contains PO stretches. As HA interacts with 

water, these peaks decrease in intensity (Fig 5.2B).  
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Fig. 5.2 PM-IRRAS spectra of H2O adsorbed to HA at room 

temperature. Main panel is an R spectra from 4000-2500 cm-1, 

while the inset is an overview of the entire R spectra from 4000-

750 cm-1.  
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Fig. 5.4 contains B-spectra of this data, where reacteD-spectra are background 

corrected, and HA is represented as a dashed green line. ReacteD-spectra were separated 

for clarity. Absorbance peaks are generally defined as peaks pointing upwards; peaks 

pointing downwards are compounds already present on the HA film. (n.b., This is 

applicable for B-spectra only.) For example, Fig. 5.2A (R-spectra) contains OH stretches 

from ~3612-3600 cm-1, which are pointing downwards indicating functional groups 

already present on the HA film, rather than pointing upwards, which would indicate their 

formation is caused by water. In order to verify and confirm these statements, B-spectra 

were rigorously compared to their counterparts in the R-spectra.  

Fig. 5.3A contains B-spectra but also has an inset of R-spectra, containing an HA 

spectrum in black. In the spectra, peaks at 2919 and 2849 cm-1 are pointing upwards, 

suggesting that these peaks grew in as the mineral surface interacted with H2O; however, 

these peaks are present on the HA spectrum observed in the R-spectra. These features are 

present before interaction with H2O and are most likely due to CH stretches, indicating 

contamination of the mineral film. Contamination may be due to the cleaning process of 

the gold-plated flat mirrors. These were rinsed with acetone and water before 

electrodeposition; residual acetone might have remained on the surface and been covered 

during the phosphate film deposition. Features at 2459, 2364, and 2327 cm-1 are assigned 

to interactions between P and OH, as P-OH stretches, these were not present on the 

mineral surface prior to reaction, and are caused by the interaction of water.173,174 Features 

from 2100-750cm-1 are represented by B-spectra in Fig. 5.3B, where 1237, 1127, 1085, 

1020, and 964 cm-1 correspond to PO stretches.173,175 
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Fig. 5.3 PM-IRRAS spectra of H2O adsorbed to HA, reaction 

occurred with 6 mL of H2O at 298 K. A) 3000-2100 cm-1, inset is 

the R spectra from 3000-2750 cm-1, B) B spectra 2100-750 cm-1, 

inset is an overview of the B spectrum from 4000-750 cm-1.  
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5.2 Data Analysis of Urea-Water (UW) on HA at 298 K 

 6 mL of UW (1:4 molar ratio) were reacted with HA, Fig. 5.4 depicts PM-IRRAS 

data in terms of R-spectra. Fig. 5.5 illustrates the O-spectra, this allows for easier 

interpretation and distinguishes differences between the background and reacteD-spectra.  

It is evident that features from 3600 to 2700 cm-1 and 1600 to 1250 cm-1 are peaks created 

by UW, because these peaks are absent in the backgrounD-spectra. A close up of the 

region from 1300 to 1000 cm-1 shows a decreased intensity for PO stretches compared to 

the background, resulting from the mineral interacting with UW.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4 PM-IRRAS spectra of UW adsorbed to HA, reaction 

occurred with 6 mL of UW at 298 K. R spectra from 4000-750 cm-1. 
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Fig. 5.6 contains B-spectra, broken down into a high and low infrared region. Fig. 

5.6A contains the region from 4000 to 2200 cm-1 and shows that peaks at 2798, 2636, 

2469, and 2354 cm-1 grow in intensity with increased reaction time. They are most intense   

after four hours compared to the first hour. Increased intensity with time suggests that 

these features are due to interactions with water. Features at 2469 and 2354 cm-1 are 

assigned to P-OH stretches, as discussed in Section 5.1. Peaks at 2798 and 2636 are new 

and could possibly be assigned as C-H stretches. However, because they have a similar 

shape as P-OH stretches at 2469 cm-1 and 2354 cm-1 and they grow as reaction time 

increases, they are more likely additional P-OH stretches.174 The change in frequency for 

these blue-shifted P-OH stretches may be different adsorption sites (e.g., atop, bridge, 

threefold, and fourfold). The peak at 3521 cm-1 appears to be shifted and grows with time 

 

Fig. 5.5 PM-IRRAS spectra of UW adsorbed to HA, reaction 

occurred with 6 mL of UW at 298 K. O spectra from 4000-750 cm-1, 

inset is a close up of PO stretches from 1300-1000 cm-1. 
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to a frequency at 3527 cm-1. This peak may be attributed to an OH stretch from water, 

because it is absent in the HA spectrum and appears to increase in intensity with reaction 

time.170 However, it might also be attributable to an asymmetric stretch from NH2, which 

is present in urea.176,177 Features at 3430, 3330, and 3218 cm-1 are most likely caused by 

NH2 groups from urea, where hydrogen binding between NH2 and OH functional groups 

may cause shifts in the frequencies.176-180 

 Lower frequency values for the adsorption of urea and water are depicted in Fig. 

5.6B. Here, the baseline is represented as a dashed line. The feature at 1754 cm-1 may be 

caused by the C=O stretch of the carbonyl group on urea, which is observed between1670 

and 1680 cm-1 in pure urea.181 A theoretical model predicted this feature at 1749 cm-1 with 

a Hartree-Fock method using a basis set of 6-31G with a Gaussian 86 program.176 The 

feature at 1682 cm-1 can be attributed to either C=O or C-N symmetric stretches. Features 

at 1638 and 1585 cm-1 are attributed to NH2 bends, while 1464 cm-1 is a combination of a 

C-N stretch, C=O bend, and an NH2 rocking vibration from urea. The peaks at 1090 and 

1060 cm-1 are PO stretches, which have also been observed on unreacted HA.173-176 Lastly, 

peaks at 963 and 913 cm-1 were present on HA before reaction (c.f., the black spectrum 

associated with HA and the coloreD-spectra showing UW adsorption on HA as shown in 

Fig. 5.4). Therefore, these two features can be assigned to PO stretches or to hydroxyl 

groups bending with respect to the surface. The feature at 963 cm-1 is possibly caused by 

hydroxyl groups interacting with water, which might have been adsorbed to the surface 

prior to reaction suggesting that water was present before reaction.174,183 The feature at 786 

cm-1 is assigned to a C-O out-of-plane bend in urea .176,177,182 
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Fig. 5.6 PM-IRRAS B spectra (baseline corrected) of UW 

adsorbed to Ca10(PO4)6(OH)2 (HA), reaction occurred with 6 mL 

of UW at 298 K. A) 4000-2200 cm-1, inset is an overview of the 

entire R spectra from 4000-750 cm-1, B) 2200-750 cm-1. 
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EDX analysis of the mineral surface prior to reaction confirmed the presence of Ca 

and P with an atomic percentage of 8.22% and 5.81%, respectively. Elements of 1% or 

greater were also detected on the surface including: C, which is ascribed to contamination 

of the film, as well as Au and Si, which are the major components of the gold-plated flat 

mirrors (Table 8). Cr was also present on characterization of HA films prior to and after 

reaction. Cr is used as a binding layer between Au and the silica base in the mirrors.  

Some of the gold-plated flat mirrors developed small bare Si patches from overuse. 

To determine if Cr might have gone into solution, inductively coupled plasma optical 

emission spectroscopy (ICP-OES, Perkin Elmer Avio 200) was performed. A chromium 

reference standard (Ricca Chemical Company) was used to create calibration standards 

with concentrations of 0.01, 0.05, and 1 ppm. Three samples were analyzed: 1) Sample 1 

was a 6 mL solution of UAFW that interacted for four hours with a gold-plated flat mirror 

with bare Si patches, 2) Sample 2 had the same conditions as Sample 1 except 10 mL of 

UAFW were used, and 3) Sample 3 had the same conditions as Sample 1 except no bare 

patches exposing the underlying silica were observed. Samples 1, 2, and 3 were analyzed 

at 267.716 nm, and contained 11, 13, and 10 ppb of Cr in solution. These are very trace 

amounts of Cr and would likely not contribute to any side reactions between UAFW and 

HA. Additionally, there was no considerable difference in the observed reactivity between 

gold-plated flat mirrors containing patches of exposed silica and those without patches of 

exposed silica.  

 Post-reaction analysis of HA by EDX in Table 5.1 indicates that Ca and P are still 

present on the surface with atomic percentages of 2.61% and 1.75%, respectively. An 

elemental map overlaid on an SEM image is illustrated in Fig. 5.7. This image shows the 
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center of the HA film after it reacted with UW for four hours. Ca and P were still detected 

on the gold-plated flat mirror, and a small amount of N, where P appeared to have a larger 

coverage of the surface compared to Ca (see Fig. 5.7). 1H-decoupled-31P-NMR analysis of 

the UW solution resulted in no phosphate detection, even after four hours of reaction with 

the UW solution (Fig. 5.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.1 Elemental Analysis by EDX of HA/Au 

After four hours of Reaction with Urea-Water 

Solution at Room Temperature. 

Element Atom % 

Pre-Reaction 

 Atom % 

Post-Reaction 

C 7.17 23.11 

N -- 39.82 

O 63.30 29.38 

Al 0.08 -- 

Si 10.20 1.94 

P 5.81 1.75 

Ca 8.22 2.61 

Cr 0.39 0.07 

Au 4.84 1.32 

Total 100.00 100.00 

 



 

94 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.7 EDX mapping of the HA/Au sample after four hours reacting with UW. 

Individual element maps of O, Ca, P, and Si are also shown.  

 

Fig. 5.8 1H-decoupled-31P-NMR spectra of UW at one hour 

intervals during reaction with HA at 298 K.  
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5.3 Data Analysis of Ammonium Formate-Water (AFW) on HA at 298 K 

O-spectra from AFW and HA are depicted in Fig. 5.9, which also contains an 

inset from 1300-1000 cm-1 where PO stretches are found. In the reacteD-spectra, the 

features in this region are less intense than in the bare HA spectrum, suggesting that the 

HA film has been dissolved by the AFW solution. This conclusion is supported by EDX 

analysis of the HA after reaction. The amount of P detected on the sample dropped from 

3.69% to an undetectable amount (Table 5.2). The inset in Fig. 5.9 also shows a peak 

caused by the optical system in the experimental setup at ~1230 cm-1. Fig 5.10 contains 

R-spectra, where a spectrum was collected when no sample was in place as well as 

spectra for HA and Au. The spectrum with no sample contains a peak at ~1230 cm-1, 

suggesting that this feature is caused by the optical system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.9 PM-IRRAS spectra of AFW adsorbed to HA, 

reaction occurred with 6 mL of AFW at 298 K. O spectra 

from 4000-750 cm-1, inset is a close up of PO stretches from 

1300-1000 cm-1. 
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Fig. 5.10 PM-IRRAS R spectra of Au, optical system with 

no sample, and HA. Collected at room temperature.  

Table 5.2 Elemental Analysis by EDX of HA/Au after a 

four hour reaction with ammonium formate/water at 298 K. 

Formula Atom % 

Pre-Reaction 

Atom % 

Post-Reaction 

C 8.31 52.69 

O 63.35 37.10 

Al - 0.53 

Si 13.25 8.59 

P 3.69 - 

Ca 5.92 - 

Cr 0.50 0.37 

Au 4.98 0.73 

Total 100.00 100.00 
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Background correcteD-spectra are depicted in Fig. 5.11 in the regions of (A) 

4000-2200 cm-1 and (B) 2200-750 cm-1. The features observed in the one-hour spectrum 

shown in Fig. 5.11A vary significantly from the other reacteD-spectra and may have been 

caused by incomplete drying. While the spectra after one, three, and four hours of 

reaction were collected after 45 minutes of drying, the spectrum after two hours of 

reaction was collected after 90 minutes of drying because of an issue with the purge 

system. Since the spectrum for two hours was collected after a longer period of time 

drying, the peak at 2361 cm-1, which dips below the baseline, was most likely created by 

water adsorbed to the mineral. The features at 2361, 2213 and 2176 cm-1 in the one-hour 

reaction spectrum are most likely due to POH stretches from the interaction of water and 

phosphate in the mineral. Since EDX analysis indicates no detection of P after four hours 

of reaction, features from ~3200 to ~2100 cm-1 must be a combination of POH stretches 

and other functional groups, which might be due to evaporation of ammonia. Features 

found at 2966 and 2797 cm-1 can be assigned to a combination of groups, including CH 

stretches from formate or possibly from P-OH stretches associated with the HA film, 

since these features were present on the film before reaction.174,184-186 There is an 

increased intensity for one hour, which appear to diminish in intensity between three and 

four hours as the reaction proceeds. The feature at 3150 in the one-hour reaction 

spectrum is likely a hydroxyl caused by water adsorption, since the spectrum for one-

hour reaction appears to contain more solution.187 Spectra for ammonium formate and 

water in Fig. 5.11 even after 45 minutes of drying, appear to contain solution on the 

surface, supported by the two-hour spectrum, which had an increased time for drying. R-

spectra of a wet HA surface for the time dependent studies are depicted in Fig. 5.12, 
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specifically from 4000 to 2100 cm-1 to highlight the evaporation of ammonia. In Fig. 

5.12, spectra for three and four hours do not contain any features from 3790 to 2530 

(besides gas-phase water), unlike spectra for one and two hours, which have upward and 

downward facing peaks, respectively. This suggests that ammonia is evaporating off the 

surface and that the one hour spectrum contained more solution and was not quite as dry 

compared to two, three, and four hours. 

 Lower frequency values are illustrated in Fig. 5.11B. Peaks at 1737 and 1705 cm-1 

are most likely due to the carbonyl on formate.188 Peaks at 1644 and 1577 cm-1 are most 

likely from the COO- and CO stretches of the formate.184,189 Features at 1470 and 1434 

cm-1  can be attributed to a CH bend and an OCO stretch, respectively. while 1375 cm-1 is 

a combination of a CH bend and OCO stretch, 1348 cm-1 is likely an OCO stretch.188-190 

Lastly, PO stretches from phosphate groups are attributed to features at 1311, 1095, and 

1059 cm-1.174 Post-reaction analysis with NMR revealed phosphate in solution after two 

hours, suggesting that ammonium formate rather than urea plays a critical role in 

phosphate dissolution (Fig. 5.13). The spectra presented here suggest that AF and HA 

have a complex interaction that is highly sensitive to the amount of hydration present and 

the amount of evaporation that occurs. Given significant variations in the time-dependent 

spectra, additional replications of the experiment are necessary to fully characterize the 

AF and HA interaction. 
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Fig. 5.11 PM-IRRAS B spectra (background corrected) of 

AFW adsorbed to HA, reaction occurred with 6 mL of UW 

at 298 K. A) 4000-2200 cm-1, inset is an overview of the 

entire R spectra from 4000-750 cm-1, B) 2200-750 cm-1. 
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Fig. 5.13 1H-decoupled-31P-NMR spectra of AFW at one hour 

intervals during reaction with HA at 298 K.  

 

 

Fig. 5.12 PM-IRRAS R spectra of AFW adsorbed to a wet 

HA surface, from 4000-2100 cm-1. 
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5.4 Data Analysis of Urea-Ammonium Formate-Water (UAFW) on HA at 298 K 

 With spectral analysis of HA, W, UW, and AFW completed with assignments for 

most peaks, data for UAFW on HA was collected and features were assigned based on 

comparison to the control systems. Using the same conditions as previous experiments 

for AFW and UW, spectral data was collected and processed. Analysis of R-spectra 

suggests that the HA film reacted with the UAFW may have had some contamination, as 

illustrated in the black background spectrum in Fig. 5.14. The peak from 1765 to 1730 

cm-1 is mostly commonly associated with carbonyl groups, possibly from carbonate 

contamination. Carbonate contamination is prevalent in hydroxyapatite as observed in 

Wang et al.191 Carbonate contamination was also observed in the electrochemical 

deposition method adapted from Thanh et al.,.140 A possible explanation for carbonate 

contamination is that CO2 could have dissolved into the plating solution during 

electrochemical deposition and formed carbonic acid (H2CO3). The resulting H2CO3 then 

reacted with the calcium nitrate (Ca(NO3)2) in the plating solution to form calcium 

carbonate (CaCO3), which precipitated onto the film. This can be avoided in future 

experiments by ensuring the flat-gold plated mirror is hung completely vertically, and 

thoroughly washing the surface of the film after it is removed from solution. Lower 

carbonate contamination levels were also achieved by using temperatures from 70-85°C 

compared to 60°C in Thanh et al.,.140  

When analyzing B-spectra, spectral features were less pronounced as the reaction 

progressed to four hours, specifically from 4000 to 2000 cm-1 (Fig. 5.15). This is most 

likely due to HA dissolving in solution over time, as in the AFW experiment, and is 



 

102 
 

supported by post-reaction elemental analysis by EDX where no P and only 0.06% of Ca 

were detected on the gold-plated flat mirrors (Table 5.3). Peaks on UAFW corresponded 

to a combination of features assigned to HA, W, UW, and AFW in the previous sections. 

For example, the broad feature from 2718 to 2300 cm-1 may be a combination of CH 

stretches from formate, CH stretches from contamination of HA by acetone, and P-OH 

stretches on HA. The only features that appeared to not be found in any of the  

 

 

Fig. 5.14 PM-IRRAS R spectra of UAFW adsorbed to HA, 

reaction occurred with 6 mL of UAFW at 298 K. R spectra 

from 4000-750 cm-1 with an inset from 1800-1600 cm-1. 
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components were at 1980 and 1881 cm-1. After the data was re-analyzed, these peaks 

were found to be present in AFW. While a specific assignment is difficult to make 

without further studies, there is a possibility that these features are related to an organic 

contaminant such as carbonate.188 

 

Fig. 5.15 PM-IRRAS B spectra of UAFW adsorbed to HA, 

reaction occurred with 6 mL of UAFW at 298 K. B spectra 

from 4000-2000 cm-1 with an inset from 4000-750 cm-1. 
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Spectra for UW, AFW, and UW can be compared for the first hour of reaction, 

represented in Fig. 5.16 for one hour and Fig. 5.17 for four hour. The one-houR-spectra 

for UW, AFW, and UAFW in Fig. 5.17 provide visual clarity, in terms of corresponding 

features found in UAFW to either AFW or/and UW. Comparison of one-houR-spectra 

was chosen since both AFW and UAFW caused HA to dissolve off the surface, so 

interactions between the mineral surfaces were more apparent at one hour. Spectral 

features in UAFW are attributable to either ammonium formate, urea, or possible carbon 

contamination (C-H stretches at 1980 and 1881 cm-1).  Some features, such as 1638, 1588 

cm-1 found on UW/HA and 1644, 1577 cm-1 for AFW/HA, are slightly more resolved 

compared to peaks in UAFW for this region, which are broader at 1566 cm-1. Features at 

1375 and 1348 cm-1 in AFW/HA are found for UAFW but are shifted to lower frequency 

values of 1363 and 1343 cm-1, this might suggest different adsorption sites. In general, 

Table 5.3 Elemental Analysis by EDX of HA/Au after a 

four hour reaction with urea, ammonium formate, and 

water at 298 K. 

Formula Atom % 

Pre- 

Reaction 

Atom % 

Post-

Reaction 

C 6.52 30.66 

N -- 30.59 

O 66.70 37.55 

Al -- 0.06 

Si 6.80 0.55 

P 6.25 -- 

Ca 8.73 0.06 

Cr 0.32 0.03 

Au 4.68 0.50 

Total 100.00 100.00 
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most frequencies found in UAFW are attributed to its components in the previous control 

experiments with some slight spectral shifts.  

 An interesting aspect for UW/HA spectra is the region from 4000-2000 cm-1 in 

hour 4, compared to hour 1. The increased intensity for hour 4 in UW suggests these 

features may be caused by interaction of urea-water and HA. POH stretches were 

observed for W/HA between ~2700 to ~2300 cm-1, these were broad peaks, while in 

UW/HA these peaks around the same region but sharper. These sharper peaks could 

suggest that the interaction of urea with HA is enhancing these features. Additionally, 

HA remains on the surface for UW, which might explain why signal intensity does not 

decrease even at four hours.   

No phosphate was observed in solution when HA reacted with UW, but phosphate 

was observed when HA reacted with AFW by NMR analysis. NMR-spectra indicates that 

phosphate was released after two hours with AFW/HA compared to one hour for 

UAFW/HA. This time dependence suggests improved solubility in UAFW compared to 

AFW, suggesting that ammonium formate and urea both play a role in phosphate 

solubility, with ammonium formate holding the primary role based on NMR analysis 

(Fig. 5.18). However, these NMR experiments would need to be repeated in order to 

establish this claim, which would be enhanced if P was quantified by ICP or phosphate 

quantification by NMR.   
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Fig. 5.16 Comparison of PM-IRRAS B spectra (background 

corrected) for UAFW, AFW, and UW adsorbed to HA for one 

hour at 298 K. B spectra from 4000-2000 cm-1 with an inset 

from 4000-750 cm-1.  
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Fig. 5.17 Comparison of PM-IRRAS B spectra of UAFW, AFW, 

and UW adsorbed to HA for four hours at 298 K. B spectra from 

4000-2000 cm-1 with an inset from 4000-750 cm-1. 

 

 

 

Fig. 5.18 31 P NMR decoupleD-spectra of UAFW at one hour 

intervals during reaction with HA at 298 K.  
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5.5 Data Analysis of MgSO4 and UAFW on HA  

 After broaD-spectral assignments for UAFW and an estimated time frame for 

phosphate release into solution were made, the next step involved investigating the effect 

of magnesium sulfate (MgSO4) on the interaction of the UAFW with HA. Previous 

research has indicated that when MgSO4 is added to UAFW, the amount of phosphorus 

in solution increases, although the form of this phosphorus may not necessarily be as 

phosphate.21 If P is released as phosphate then this ion has a strong affinity for divalent 

cations. These cations would most likely bind to magnesium ions and a magnesium 

phosphate compound is more soluble compared to a calcium phosphate compound.32 This 

ion exchange also produces more soluble phosphate due to the strong affinity of calcium 

for sulfate. Another role that MgSO4 could play is in the mineral transformation of HA 

into more soluble phosphate minerals (e.g., struvite, NH4MgPO4·6H2O and newberyite, 

Mg(HPO4)·3H2O).22, 32 Previous reactivity experiments mentioned in Sections 5.1-5.4 

used 6 mL of solution; for these experiments 6 mL and 10 mL solutions were used with 

10 mL solutions providing the best results for PM-IRRAS (complete dissolution of 

MgSO4).  

Concentrations of 249 and 747 mM MgSO4 in UAFW were used to observe 

changes in surface features and HA solubility as the concentration of MgSO4 increased. 

Fig. 5.19 presents a comparison between these different concentrations and pure UAFW 

at one hour. In Fig.5.19A the spectrum for 249 mM MgSO4 appears more intense 

compared to UAFW in the high frequency region because more water is present, which 

might be explained by MgSO4 precipitating onto the film and absorbing water (MgSO4 is 

hygroscopic). As the concentration of MgSO4 increased, the solution became more 
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saturated and limited the dissolution of HA into solution. When the solution was very 

concentrated with MgSO4, the sample lost infrared reflectivity anD-spectra became 

difficult to acquire because of low signal intensity. An SEM image of a 5 M MgSO4 in 

UAFW solution is shown in Fig. 5.20. Cuboid-like structures formed with excess MgSO4 

and PM-IRRAS was not possible for this sample since it was very unreflective. Fig. 5.21 

presents spectra of pure UAFW, 249 mM of MgSO4
 in UAFW, and 747 mM of MgSO4 in 

UAFW in the spectra range of 2000 to 750 cm-1. A majority of features found in the 

UAFW are also present in the low concentration MgSO4 solution (i.e., 249 mM) while 

some features are less intense in the high concentration MgSO4 solution (i.e., 747 mM). 

For example, peaks 1980 and 1881 cm-1 appear on pure UAFW and of 249 mM MgSO4 

but are absent in 747 mM MgSO4. Additionally, peaks have better resolution in UAFW, 

as an example peaks 1363 and 1343 cm-1 are more resolved compared to similar features 

on 249 mM MgSO4 at 1376 and 1348 cm-1. Generally, peaks on the 747 mM MgSO4 

spectrum are broader and less intense, such as 1641 and 1577 cm-1, which are more broad 

compared to the same features on UAFW and 249 mM MgSO4 at 1577 and 1566 cm-1 

(see Fig. 5.21 C). A distinguishable spectral feature for the 747 mM MgSO4 one hour 

spectrum is at 1083 cm-1 which is less intense for the 249 mM and pure UAFW spectra 

(see Fig. 5.21 D). The feature at 1083 cm-1 is found in the backgrounD-spectra of the 249 

mM and 747 mM MgSO4 spectra (see Fig. 5.23D).  However, it is not observed in the 

pure UAFW spectrum. The peak at 1083 cm-1 is a PO stretch for HA and is present 

before reaction for reactivity experiments of 249 mM and 747 mM MgSO4. Infrared 

features for MgSO4 deposited onto the HA surface are not directly observed for the 

spectra collected, which may be attributed to two factors. One possibility is that peaks 
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associated with SO4 (e.g., 1123, 1172 and 946 cm-1) are hidden because of PO stretches 

are found in this region.192 Another possibility is that the sulfate ion is sensitive to water; 

an anhydrous sample has less intense and decreased linewidth compared to liquid 

samples.193 

Although the synthesis of these films were performed under the same conditions, 

the HA films are not identical. Fig. 5.23 contains O-spectra with three HA backgrounD-

spectra corresponding to each experiment (UAFW, 249 mM, and 747 mM MgSO4). 

Generally, spectral features from 4000-1300 cm-1 do not appear on the backgrounD-

spectra (e.g., see Fig. 5.22 and 5.23). (n.b., The intensity of infrared vibrational peaks 

does not scale with concentration, even if signal intensity is drastically different for each 

spectra.) 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

111 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.19 PM-IRRAS B spectra of 249 mM MgSO4 UAFW, 747 mM 

MgSO4 UAFW, and UAFW adsorbed to HA at 298 K. A) spectra from 

4000-750 cm-1. B) spectra from 4000-2000 cm-1.  

 



 

112 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 5.20 SEM image of a HA/Au sample after a 

four hour reaction with a saturated MgSO4 

solution (5 M). 
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Fig. 5.21 PM-IRRAS B spectra of 249 mM MgSO4 

UAFW, 747 mM MgSO4 UAFW, and UAFW adsorbed to 

HA at 298 K after one hour, C) spectra from 2000-1300 

cm-1. D) spectra from 1300-750 cm-1. 
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Fig. 5.22 PM-IRRAS O spectra of 249 mM MgSO4 

UAFW, 747 mM MgSO4 UAFW, and UAFW adsorbed to 

HA at 298 K after one hour, A) spectra from 4000-750 cm-

1. B) spectra from 4000-2000 cm-1. 
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Fig. 5.23 PM-IRRAS O spectra of 249 mM MgSO4 

UAFW, 747 mM MgSO4 UAFW, and UAFW adsorbed to 

HA at 298 K after one hour, C) spectra from 2000-1300 

cm-1. D) spectra from 1300-750 cm-1. 
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Post-reaction analysis for 249 and 747 mM MgSO4 was enhanced by EDX 

analysis (Table 5.4). The results show a significant amount of carbon, which is most 

likely attributable to a layer of organics on the mirror surface as a result of cleaning with 

acetone. After four hours of reaction in UAFW containing 249 mM of MgSO4, Mg2+ 

remains on the surface, P was not detected, and only 0.01% of Ca was detected on the 

substrate. When HA reacted with AFW and UAFW, no solid was visible on the surface of 

the gold-plated mirror, but reactions with MgSO4
 did leave visible solid on the surface. 

Elemental mapping of the HA/Au sample after reaction with 249 mM of MgSO4 indicates 

a solid on the surface at 5 mm. EDX performed on this solid at 250 μm revealed the 

solid’s composition consisted of N, O, C, S, Mg, and Ca (see Fig. 5.24). For the sample 

exposed to UAFW with a concentration of 747 mM of MgSO4, more solid remained on 

the surface of the gold-plated flat mirror compared to the 249 mM MgSO4 solution. The 

solid remaining on the substrate after reaction with the high concentration of MgSO4 was 

composed primarily of N, O, C and Mg (see Fig. 5.25).  

NMR analysis of the supernatant was replicated twice for the solutions of 249 

mM MgSO4 without and with centrifuging and syringe filtering. Both experiments 

revealed phosphate in solution (see Fig. 5.26). NMR analysis was only replicated once 

for solutions of 747 mM MgSO4 in UAFW, and there was no detection of P in solution by 

31P-NMR (see Fig. 5.27). NMR analysis of solutions with higher concentration than 249 

mM MgSO4 (i.e., 416 and 831 mM MgSO4) detected phosphate in solution, and one- and 

two-hour NMR-spectra were only collected for 831 mM MgSO4, because the solution 

became supersaturated (see Fig. 5.28). NMR analysis of the 747 mM MgSO4
 solution is 
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inconclusive based on these results and would need to be replicated in the future. A 

summary of relative assignments for PM-IRRAS peaks of HA, W, UW, AFW, UAFW, 

249, and 747 mM MgSO4 is presented in Tables 5.5, 5.6, and 5.7.  

 

 

 

 

 

  

Table 5.4 Elemental Analysis by EDX of HA/Au after a four hour 

reaction with 249 mM MgSO4 UAFW and747 mM MgSO4 UAFW at 

298 K. 

Formula Atom % 

Pre-

Reaction  

249 mM a 

UAFW 

Atom % 

Post-

Reaction 

249 mM 

MgSO4 

UAFW 

Atom % 

Pre-

Reaction  

747 mM 

MgSO4 

UAFW 

Atom % 

Post-

Reaction  

747 mM 

MgSO4 

UAFW 

C 8.94 20.41 10.21 19.00 

N -- 32.34 -- 22.32 

O 64.42 42.52 63.24 56.90 

Si 9.18 0.08 8.10 -- 

S -- 1.45 -- -- 

Al -- 0.02 -- 0.07 

TI -- -- -- 0.08 

P 4.64 -- 5.55 -- 

Ca 7.21 0.01 7.87 -- 

Cr 0.37 0.01 0.34 -- 

Au 5.24 0.21 4.70 0.02 

Mg -- 2.94 -- 1.61 

Total 100.00 100.00 100.00 100.00 
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Fig. 5.24 EDX mapping of the HA/Au sample after a four hour reaction 

with 249 mM MgSO4 UAFW at 298 K. A) HA/Au sample at 5 mm B) 

Center of the sample with solid present. Individual element maps of N. O, 

C, Si, Mg, and Ca are presented.  
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Fig. 5.25 EDX mapping of the HA/Au sample after a four hour 

reaction with 747 mM MgSO4 UAFW at 298 K. A) HA/Au sample 

at 5 mm B) Center of the sample with solid present. Individual 

element maps of N. O, C, and Mg are presented. Purple represents 

Au.  
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Fig. 5.26 31 P NMR decoupleD-spectra of 249 mM MgSO4 

during reaction with HA at 298 K. A) Samples were not 

centrifuged or syringe filtered, B) Samples were 

centrifuged or syringe filtered. 
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Fig. 5.27 31 P NMR decoupleD-spectra of 747 mM MgSO4 

during reaction with HA at 298 K. 
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Fig. 5.28 31 P NMR decoupleD-spectra of: A) 416 mM 

MgSO4 and B) 831 mM MgSO4 during reaction with HA at 

298 K. 
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CHAPTER 6. CONCLUSION AND FUTURE WORK  

This study investigated surface interactions of hydroxyapatite (HA), a prebiotic 

plausible phosphate mineral source on the early Earth, with urea-rich solvents and 

magnesium sulfate. Synthesis of HA was performed by electrochemical deposition with a 

gold-plated flat mirror serving as the substrate. PM-IRRAS, a polarization modulation 

infrared technique, was developed and enhanced for these surface-sensitive studies. A 

liquid-solid cell was built and altered along with a purge and optical system, serving to 

enhance infrared signal and limit interference from background gases such as H2O and 

CO2. The mineral surface was characterized prior to reaction by SEM/EDX and PM-

IRRAS. SEM/EDX analysis revealed a porous, thin, phosphate film on the surface and 

confirmed the presence of calcium and phosphorus. PM-IRRAS analysis prior to reaction 

suggested that hydroxyls have multiple orientations on the mineral surface and that 

carbonate may be a minor contaminant on the surface. Reactivity studies focused on 

reactions of HA with urea-rich solvents up to four hours.  Infrared analysis of the surface 

was performed with dried samples. Based on reactions with water, urea-water, and 

ammonium formate-water at room temperature, features of a 1:2:4 urea/ammonium 

formate/water solution were roughly assigned when this solution was adsorbed to HA. It 

was found that ammonium formate binds to HA to mobilize phosphate and increase 

dissolution. This result was corroborated by proton decoupled 31P NMR analysis. 

Addition of MgSO4 revealed similar PM-IRRAS results as that of UAFW, but as the 
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concentration of MgSO4 increased, solid (most likely precipitated MgSO4) remained on 

the metal substrate.  

Surface chemistry is complex. Solid materials do not always have a well-ordered 

crystalline surface, and even when they do, it can still be challenging to interpret their 

reactivity as discussed in Chapter 1. Synthesizing and studying single macroscopic 

crystal surfaces allows for facile analysis of molecular adsorption, since these surfaces 

are well-ordered. Single crystals are cut in specific orientations, creating surfaces with a 

high degree of order (periodicity) and simple structure. Various single crystals of metal 

can be synthesized and contamination (e.g., oxidation) may be minimized by using 

ultrahigh vacuum chambers (UHV).113 For this project, growth of single-crystal 

phosphate films on a metal substrate would have been time and cost exhaustive. It would 

have required matching lattice parameters in the hydroxyapatite and the underlying metal, 

adding a considerable layer of complexity to the project. While the ultrathin use in this 

work were porous and not completely consistent between batches, they were very 

representative of the imperfection of natural minerals, which are also porous and 

irregular.   

Future steps will include isotopic experiments to clarify the assignments based on 

spectral shifts. Additionally, inconsistencies between spectra necessitate several 

replications of the: 1) PM-IRRAS experiments and 2) NMR experiments when MgSO4 is 

added.  Phosphorus quantification with inductively coupled plasma optical emission 

spectroscopy (ICP-OES) would also aid in the interpretation of the infrared assignments. 

Quantification of phosphorus would enhance supernatant analysis and determine if more 

phosphorus is released when AFW or UAFW interacts with hydroxyapatite. An 
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additional modification to this study would be a liquid-solid cell re-design for in situ 

experiments at variable temperatures.  
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135. Ertl, G.; Kü ppers, J. Low Energy Electrons and Surface Chemistry; Verlag Chemie: 

Weinheim, 1989.  



 

145 
 

136. Woodruff, D. P.; Delchar, T. A. Modern Techniques in Surface Science; Cambridge 

Solid State Science Series; Cambridge University Press: Cambridge, 1986. 

137. Freund, H. J.; Dillmann, B.; Ehrlich, D.; Haßel, M.; Jaeger, R. M.; Kuhlenbeck, H.; 

Ventrice, C. A.; Winkelmann, F.; Wohlrab, S.; Xu, C.; Bertrams, T.; Brodde, A.; 

Neddermeyer, H. Adsorption and Reaction of Molecules on Surfaces of Metal-metal 

Oxide Systems. J. Mol. Catal. 1993, 82 (2-3), 143-169. 

138. Kuhlenbeck, H.; Shaikhutdinov, S.; Freund, H.-J. Well-Ordered Transition Metal 

Oxide Layers in Model Catalysis-A series of Case Studies. Chem. Rev. 2013, 113 (6), 

3986- 4034. 

139. Gshalaev, V. S.; Demirchan, A. C. Hydroxyapatite synthesis, properties, and 

applications; Nova Science Publishers: New York, 2012; p 92. 

140. Thanh, D. T. M.; Nam, P. T.; Phuong, N. T.; Que, L. X.; Anh, N. V.; Hoang T.; Lam, 

T. D. Controlling the electrodeposition, morphology, and structure of hydroxyapatite 

coating on 316L stainless steel.” Mater. Sci.Eng. 2013, C 33, 2037-2045. 

141. Mallik, A.; Ray, B. C. Evolution of Principle and Practice of Electrodeposited Thin 

Film: A Review on Effect of Temperature and Sonication. International Journal of 

Electrochemistry, 2011, 1–16. 

142. Kakooei, S.; Ismail, M. C.; Wahjoedi, B. A. Electrochemical Study of Iridium Oxide 

Coating on Stainless Steel Substrate. International Journal of Electrochemical Science. 

2013, 8(3), 3290 – 3301. 

143. Fornell, J.; Feng, Y. P.;Pellicer, E.; Surinach, S.; Baro, M.D.; Sort, J. Mechanical 

behaviour of brushite and hydroxyapatite coatings electrodeposited on newly developed 

FeMnSiPd alloys. J. Alloys Compd. 2017, 729, 231-239. 



 

146 
 

144. Jamesh, M.; Kumar, S.; Narayanan, T. S. N. S. Electrodeposition of Hydroxyapatite 

Coating on Magnesium for Biomedical Applications. Journal of Coatings Technology and 

Research 2011, 9 (4), 495–502. 

145. Mallik, A.; Ray, B. C. Evolution of Principle and Practice of Electrodeposited Thin 

Film: A Review on Effect of Temperature and Sonication. International Journal of 

Electrochemistry 2011, 1–16. 

146. Pasa, A. A.; Munford, M. L. In Encyclopedia of Chemical Processing; Taylor & 

Francis Group: New York, NY, 2006; Vol. 3, pp 821–832. 

147. Pletcher, D. A First Course in Electrode Processes, 2nd ed.; RSC Publishing: 

Cambridge, UK, 2009; pp 137-143.  

148. Survila, A. Electrochemistry of Metal Complexes: Applications from Electroplating to 

Oxide Layer Formation; Wiley‐VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 

2015. 

149. Meier, D. M.; Urakawa, A.; Mäder, R.; Baiker, A. Design and Performance of a 

Flow-through Polarization-Modulation Infrared Reflection-Absorption Spectroscopy Cell 

for Time-Resolved Simultaneous Surface and Liquid Phase Detection under 

Concentration and Temperature Perturbations. Review of Scientific 

Instruments 2009, 80 (9), 094101. 

150. Yates, J. T. Vibrational spectroscopy of molecules on surfaces; Plenum Pr.: New York 

u.a., 1987. 

151. Monyoncho, E. A.; Zamlynny, V.; Woo, T. K.; Baranova, E. A. The Utility of 

Polarization Modulation Infrared Reflection Absorption Spectroscopy (PM-IRRAS) in 

Surface and in Situ Studies: New Data Processing and Presentation Approach. The 

Analyst 2018, 143 (11), 2563–2573. 



 

147 
 

152. Greenler, R. G. Reflection Method for Obtaining the Infrared Spectrum of a Thin 

Layer on a Metal Surface. The Journal of Chemical Physics 1969, 50 (5), 1963–1968. 

153. Faguy, P. W.; Richmond, W. N. Real-Time Polarization Modulation Infrared 

Spectroscopy Applied to the Study of Water and Hydroxide Ions at Electrode 

Surfaces. Journal of Electroanalytical Chemistry 1996, 410 (1), 109–113. 

154. Rowe, D. J., Smith, D., & Wilkinson, J. S. (2017). Complex refractive index spectra 

of whole blood and aqueous solutions of anticoagulants, analgesics and buffers in the 

mid-infrared. Scientific Reports. 

155. Downing, H. D. & Williams, D. (1975). Optical Constants of Water in the Infrared. 

Journal of Geophysical Research, 80(12). 

156. Lucarini, V., Saarinen, J. J., Peiponen, K.-E. & Vartiainen, E. M. Kramers-Kronig 

Relations in Optical Materials Research; Springer: Berlin, Germany, 2005. 

157. Kubota, J.; Ma, Z.; Zaera, F. In Situ Characterization of Adsorbates in Solid−Liquid 

Interfaces by Reflection−Absorption Infrared Spectroscopy. Langmuir 2003, 19 (8), 

3371–3376. 

158. Bunaciu, A. A.; Udriştioiu, E. g.; Aboul-Enein, H. Y. X-Ray Diffraction: 

Instrumentation and Applications. Critical Reviews in Analytical Chemistry 2015, 45 (4), 

289-299. 

159. Robinson, J. W. Undergraduate instrumental analysis; M Dekker: New York, 1995 

160. Libretexts. X-ray diffraction (XRD) basics and application. 

https://chem.libretexts.org/Courses/Franklin_and_Marshall_College/Introduction_to_Mat

erials_Characterization_-_CHM_412_Collaborative_Text/Diffraction_Techniques/X-

ray_diffraction_(XRD)_basics_and_application (accessed Dec 18, 2019). 



 

148 
 

161. Khursheed, A. Scanning electron microscope optics and spectrometers; World 

Scientific: Singapore, 2011. 

162. Luo, Z. A practical guide to transmission electron microscopy fundamentals, 1st ed.; 

Momentum Press: New York, NY, 2016. 

163. Balci, M. Basic ¹H- and ¹³C-NMR spectroscopy; Elsevier: Amsterdam, 2005. 

164. Pasek, M. Phosphorus NMR of Natural Samples; Free Radical Consulting: Seffner, 

FL, 2018.  

165. Johnsson, M. S.-A.; Nancollas, G. H. The Role of Brushite and Octacalcium 

Phosphate in Apatite Formation. Critical Reviews in Oral Biology & 

Medicine 1992, 3 (1), 61–82. 

166. V.; Ng, C.; Wilke, M.; Tiersch, B.; Fratzl, P.; Peter, M. Size-Controlled 

Hydroxyapatite Nanoparticles as Self-Organized Organic?Inorganic Composite 

Materials. Biomaterials 2005, 26 (26), 5414–5426. 

167. Yang, Y.; Han, J.; Ning, X.; Cao, W.; Xu, W.; Guo, L. Controllable Morphology and 

Conductivity of Electrodeposited Cu2O Thin Film: Effect of Surfactants. ACS Applied 

Materials & Interfaces 2014, 6 (24), 22534–22543. 

168. Kauffman, G. B. Eduard Schweizer (1818-1860): The Unknown Chemist and His Well-

Known Reagent. Journal of Chemical Education 1984, 61 (12), 1095. 

169. Accuracy, Precision and Detection Limits. 

https://myscope.training/legacy/analysis/eds/accuracy/ (accessed Feb 16, 2020). 

170.Wang, X.; Zhang, L.; Liu, Z.; Zeng, Q.; Jiang, G.; Yang, M. Probing the Surface 

Structure of Hydroxyapatite through Its Interaction with Hydroxyl: a First-Principles 

Study. RSC Advances 2018, 8 (7), 3716–3722. 



 

149 
 

171.Dabo, I.; Wieckowski, A.; Marzari, N. Vibrational Recognition of Adsorption Sites for 

CO on Platinum and Platinum−Ruthenium Surfaces. Journal of the American Chemical 

Society 2007, 129 (36), 11045–11052. 

172. Lansford, J. L.; Vlachos, D. G. Infrared Spectroscopy Data- and Physics-Driven 

Machine Learning for Characterizing Surface Microstructure of Complex 

Materials. Nature Communications 2020, 11 (1). 

173. Zu, L.; Gao, X.; Lian, H.; Cai, X.; Li, C.; Zhong, Y.; Hao, Y.; Zhang, Y.; Gong, Z.; 

Liu, Y.; Wang, X.; Cui, X. High Electrochemical Performance Phosphorus-Oxide 

Modified Graphene Electrode for Redox Supercapacitors Prepared by One-Step 

Electrochemical Exfoliation. Nanomaterials 2018, 8 (6), 417. 

174. Hampton, C.; Demoin, D.; Glaser, R.E. Vibrational spectroscopy tutorial: sulfur and 

phosphorus Org Spectrosc (2010) 

https://faculty.missouri.edu/~glaserr/8160f10/A03_Silver.pdf (accessed April 4, 2020) 

175. Seesanong, S.; Laosinwattana, C.; Boonchom, B. A simple rapid route to synthesize 

monocalcium phosphate monohydrate using calcium carbonate with different pahses 

derived from green mussel shells. J. Mater. Environ. Sci. 2019, 10 (2) 113-118.  

176.Li, X.; Stotesbury, S. J.; Jayasooriya, U. A. InfrareD-spectra of Urea Isolated in a 

Solid Argon Matrix. Spectrochimica Acta Part A: Molecular Spectroscopy 1987, 43 (12), 

1595–1597. 

177. King, S. Low Temperature Matrix Isolation Study of Hydrogen-Bonded, High-Boiling 

Organic Compounds—III: InfrareD-spectra of Monomeric Acetamide, Urea and Urea-

d4. Spectrochimica Acta Part A: Molecular Spectroscopy 1972, 28 (1), 165–175. 



 

150 
 

178. Uno, T.; Machida, K.; Saito, Y. Out-of-Plane Vibrations of Acetamide and Partially 

N-Deuterated Acetamide. Spectrochimica Acta Part A: Molecular 

Spectroscopy 1971, 27 (6), 833–844. 

179. Hadži, D.; Kidrič, J.; Kneževic, Ž.; Barlič, B. The Normal Coordinate Analysis of 

Urea, Thiourea, and Thier Isotopic Analogues in the Solid Phase and in 

Solution. Spectrochimica Acta Part A: Molecular Spectroscopy 1976, 32 (4), 693–704. 

180.Teo, L.-S.; Chen, C.-Y.; Kuo, J.-F. Fourier Transform Infrared Spectroscopy Study on 

Effects of Temperature on Hydrogen Bonding in Amine-Containing Polyurethanes and 

Poly(Urethane−Urea)s. Macromolecules 1997, 30 (6), 1793–1799. 

181. Manivannan, M,: RAJENDRAN, S. Investigation of inhibitive action of urea-Zn2+ 

system in the corrosion control of carbon steel in sea water. International Journal of 

Engineering Science and Technology 2011, 3 (11), 8048-8060.  

182. Vijay, A.; Sathyanarayana, D. Ab Initio Study of the Force Field, Geometry and 

Vibrational Assignment of Urea. Journal of Molecular Structure 1993, 295, 245–258. 

183. Wypych, F. Clay surfaces: fundamentals and applications; Academic: Oxford, 2004. 
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Appendix 1. Standard Operating Procedure for SEM 

Tescan Vega 3: Scanning Electron Microscopy with Energy Dispersive X-Ray 

Spectroscopy  

 

(SEM/EDX)  

Written by Estefania Garcia  

Edited by Matthew Rosenberg and Heather Abbott-Lyon 

 

I. Getting Started 

1. Reserve time online at https://faces.ccrc.uga.edu/. Consult with your PI or 

instrumentation manager for help.  

2. Sign the logbook include: date, time, user’s name, PI’s name (if different) and 

sample type. 

3. Click the VegaTC icon  on the Windows Desktop (located on the left monitor).  

4. The login screen will appear, requiring a username and password.   

a. Username: Research  

b. Password: Research 

II. Adding/Removing Samples 

1. The sample should be fixed with carbon or 

copper tape to the specimen stub (see Fig. 1) 

before it’s placed in the sample chamber. 

Tweezers should be used to peel the tape and 

gloves should be worn to attach the sample. 

If you are unsure how to do this, consult with 

your PI or instrumentation manager. 

2. Click on the “Home” button, which is located on the stage control panel, to ensure 

that the sample stage is lowered to 40 mm on the z-axis. The chamber camera 

should be off.  

 

Fig. 1 Specimen stub (left) and 

carbon tape (right).  

 

https://faces.ccrc.uga.edu/
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3. The microscope needs to be vented before placing a sample inside, click on the 

“Vent” button in the Vacuum panel (on the lower right side of the screen). Wait 

until the panel turns green, this indicates the pressure has increased to atmospheric 

level.  

4. Always wear gloves when handling samples 

and inserting them into the chamber. 

5. Carefully open the chamber door by pulling 

it out slowly ensuring you do not hit anything. Fig. 2 

shows the chamber door open. 

6. There is a stage control panel on the desktop 

(illustrated below in Fig. 3); this has the automatic 

sample positions. The sample position can be 

selected by clicking on the corresponding number 

button on the carousel. The stage will then rotate to 

that position. For example, if you click on “2” (as 

shown below), the carousel will rotate to the “2” 

position allowing you add or remove a sample from position “2.”  

7. Once the stage has finished rotating, the 

screw on the sample stage must be loosened 

using an Allen wrench or screwdriver.  

 

Fig. 2 Photo of the SEM 

chamber door when open.  

 

Fig. 3 Stage Control Panel.  
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8. Affix the sample to the specimen stub with carbon or copper tape. Place the 

specimen stub in the sample stage with suitable tweezers. Tighten the screw until 

there is a give or a pushback, indicating that the sample stub has made an electrical 

connection to the sample stage. Ensure that the sample does not touch the inside 

of any part of the chamber. If the sample does touch the chamber, then there will 

be an acoustic buzzer. If you hear the buzzer, consult with your PI or 

instrumentation manager for help. 

9. Close the chamber door tightly.   

10. Click on the “Pump” button in the Vacuum panel, it takes around 3 minutes for 

the microscope be vacuum ready (see Fig. 4). NOTE: Sometimes a vacuum error 

may occur during the “PUMP” procedures, if so then wipe down the door and O-

ring with a Kimwipe,™ ensure the O-ring is inside the track, and then, repeat the 

pumping procedure.  

11. To remove the sample, VENT 

the chamber via clicking the 

VENT button, and repeat Steps 

5-7 as described above, except 

for Step 7 remove the sample. 

III. Analyzing Samples 

A. Getting Started 

1. Once the microscope is vacuum ready, click the “HV” button on the electron beam 

panel to turn on the high voltage (Fig. 5). Select the voltage appropriate for the 

sample. Samples with low conductivity work best with 10.00 kV; for all other 

samples 30.00 kV is recommended.  

 

Fig. 4 Pumping procedure. 
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2. Select the sample to be analyzed by selecting its sample position in the Stage 

control panel (Fig. 6), click on the corresponding number on the carousel. 

 

 

 

 

 

 

 

3. Make sure that the chamber view is 

visible, by clicking on this icon  

located on the Main Toolbar menu. 

4. To achieve optimum resolution, shorten 

the working distance by moving the stage 

closer to the microscope, adjusting the Z 

axis, located on the stage control panel 

(Fig. 7). This number cannot be less than 10 mm or the stage may hit the 

microscope. 

Fig. 5 Electron Beam Panel. 

 

Fig. 7 Stage Control Panel. 

Fig. 6 Tescan Carousel. 
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5. To move the image, place the cursor over the SEM and 

use the trackball (Fig. 8) to adjust the location of the 

image, alternatively use the left, right, up and down 

arrows located on the stage control panel. 

6. The brightness and contrast can be adjusted by 

selecting the auto signal function, by clicking on this 

icon  located on the toolbar. To manually adjust the brightness and contrast, 

use the icon  and the Trackball. 

7. Magnify the image by clicking this icon  on the toolbar, and adjust with the 

Trackball by turning it left and right.  

8. Now that the image has been focused and magnified, adjust the speed by clicking 

on the speed icon  located on the toolbar. 

9. Focus the image by clicking on the “working distance” icon , which is in 

the toolbar. Spin the Trackball from left to right to adjust the focus (Fig. 8). 

Additionally, right click on the mouse and select “Auto WD.” 

10. Alternatively, checking the spot size may also improve image quality. The spot 

size is determined by the beam intensity value, right click on the image and select 

“Auto BI OptiMag.”  

 

B. Wobble 

1. Wobble adjusts the focal point of the sample up or down in relation to the sample, 

the wobble setting 

centers the objective 

lens. If the image 

rocks (shakes) back 

and forward, then 

adjustments are 

needed. 

 

Fig. 8 Trackball. 

 

Fig. 9 Wobbler sensitivity. 
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2. Click on the wobble icon  to start the adjustment. The Manual Centering Wizard 

will appear (Fig. 9), click on the “Next>>>” button.  

3. There are two adjustable values for centering the image. To ensure that only one 

value is changing, hold down the F12 key to change only the X movement and 

adjust with the Trackball, and hold down the F11 key to change only the Y 

movement and adjust with the Trackball.  

4. Select “Finish” once the image is adjusted appropriately. 

 

C. Alignment of the Electron beam (i.e., “Focusing” and “Stigmation,” this step 

is optional) 

1. When observing images at higher magnification, the image loses focus and 

astigmatism needs to be corrected. This can be corrected by clicking on this icon 

 and manually adjusting it using the F11 and F12 keys in a similar manner as 

for the wobble function. 

2. Alternatively, right click and select “Auto Stigmation.” 

 

D. Acquiring (saving image)  

1. To change the parameters of the image being collected, click on the “SEM” option 

on the main upper menu and then select “Image Parameters”, the scanning speed 

at which the image is being acquired can be adjusted (Fig. 10 and 11).  Additionally, 

for low conductive samples, it may be best to collect the image in the current speed, 

click on “Keep actual speed.”  

2. To save the image click on the “Acquire” button, which is the last icon on the  

toolbar . A “Header of Save” window will appear, click cancel and proceed to 

Step 3.  

3. Choose the appropriate folder to store the image under your research group. 
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E.   Logging Off 

1.  If the sample needs to be analyzed by EDX then proceed to Section IV, and do 

not close out of the program or remove the sample.  

2.  If the sample does not need to be analyzed by EDX, then the sample may be 

removed (while wearing gloves) by the reverse process in Section II and 

summarized briefly below. 

>>1) Click on the “Home” button in the stage control panel; 2) Click on the 

“Vent” button in the vacuum panel, so that the microscope can be vented; 3) 

Open the chamber door carefully; 4) Use the stage control panel to select the 

sample position; 5) Use a screwdriver or Allen wrench to loosen the screw on the 

sample stage for that specific sample; 6) Remove the sample; and 7) Use a 

screwdriver or Allen wrench to tighten the screw.  

3.   Once the sample has been removed and the microscope is vacuum ready by having 

selected “Pump,” then close out of the program. Click “Exit Only.” The other 

option will switch off the instrument. DO NOT click on that optionIV. Energy 

Dispersive X-Ray (EDX) Detector 

 

 

Fig. 10 SEM menu. 

 
 

Fig. 11 SEM Image Parameters. 
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A. Getting Started 

1. Turn off the chamber view on the SEM by clicking on the camera icon . 

2. Leave the program for the VEGA microscope open. 

3. The program used for EDX is Pathfinder, which is located on the right monitor, 

click on this icon . 

4. The program will open and there will be a window that appears, prompting the 

user to select the folder in which the image of interested is located. Double-click 

on the appropriate folder. 

5. Click on “Get Image” located under “Spectral Imaging” on the right-hand side 

of the screen, as shown below in Fig. 12.  

 

 

 

6. The image will load and appear on the left screen. Before starting analysis, click 

on the experiment setup button next to “Start Map,” which is located next to “Get 

Image.” Select the appropriate settings for the sample or consult your PI. Average 

map acquisition settings include: resolution of 256x192, frame time 20 seconds, 

number of frames 200, low energy cutoff 100, high energy cut off auto, and time 

constant rate 3.  

7. For EDX, try to increase the “cps” (counts per second, located on the bottom left 

of the screen) above 1000 (kcps) to get an optimum spectrum; this may be done 

by increasing the voltage on the “HV” button, which is located on the left monitor 

in the Tescan Vega program. 

8. Start EDX analysis by clicking “Start Map.” 

9. After the spectrum is collected, save it by exporting it into a Word document. This 

is located underneath the File button, as shown in Fig. 13 below. 

Fig. 12 Image Acquisition. 
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B. Overlay Maps and Electron Image 

Individual or multiple element maps can be overlaid on the image to see if the detected 

elements correspond to features on the sample. Overlaying is done after a map has been 

collected for EDX.Then, the detected elements can be overlaid.  

1. Click the element label above the map; the element symbol will turn black, as 

represented in Figure 14. This will overlay the selected element on the image. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.  The transparency and brightness of the selected element can be adjusted by 

selecting the “Image Settings” tab on the control panel.  

 

Fig. 14 Map Overlay on Image. 

 

Fig. 13 Exporting EDX 

files.  
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3.   To overlay multiple elements on the image, select the “Image Settings” button as 

represented in Fig. 15.  

4.   Set Scope to “Electron Image” and click the element label above the map. The 

element symbol will turn black, as represented in Fig. 14. Then, click on “Map 

Overlays.” 

5.  To display the legend for the elements located in the image, click on “Show 

Legend,” which is above the Map Overlays option in the image settings. 

6.   Additionally, to better help identify the elements found, their color can be 

changed. This can be done for each individual element by clicking on “Selected 

Map” located in the Scope option. 

 

C. Automatic Quantitative Analysis (weight% and atomic %) 

1.    To quantify the chemical elements detected, click on “Spectrum” in the 

Microanalysis tab (Fig. 16). 
 

 

 

 

 

 

 

 

 

 

 

Fig. 15 Transparency and Brightness, Image Settings. 

 

Fig. 16 Microanalysis Tab. 
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2.  Under Spectrum Processing (Fig. 

17) select “Quant Setup” and click 

“Process.” 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.   A table of elements with their 

corresponding weight % will 

be generated. This may be 

exported by clicking the 

MSWord icon underneath 

File in the upper left corner 

(see Fig. 18).  
 

 

 

 

 

 

 

 

 

 

D. Logging Off 

1.   When finished with the program, simply exit out of Pathfinder, and click “okay.” 

Go back to Section III, E for directions on sample removal and place SEM in 

standby mode. Make sure you sign out of th 

 

Fig. 17 Quant Setup. 

 

Fig. 18 EDX Quantitative results, with weight 

% and atomic %.  
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