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ABSTRACT 

Traffic congestion is not foreign to major metropolitan areas. Congestion in large cities 

often is associated with dense land developments and continued economic growth. In 

general, congestion can be classified into two categories: recurring and nonrecurring. 

Recurring congestion often occurs at certain parts of highway networks, referred to as 

bottleneck locations. Nonrecurring congestion, on the other hand, can be caused by 

different reasons, including work zones, special events, accidents, inclement weather, 

poor signal timing, etc. The work presented here demonstrates an approach to effectively 

identifying spatiotemporal patterns of traffic congestion at a network level. The Metro 

Atlanta highway network was used as a case study. Real time traffic data was acquired 

from the Georgia Department of Transportation (GDOT) Navigator system. For a 

qualitative analysis, speed data was categorized into three levels: low, median, and high. 

Cluster analysis was performed with respect to the categorized speed data in the 

spatiotemporal domain to identify where and when congestion has occurred and for how 

long, which indicate the severity of congestion. This qualitative analysis was performed 

by day of week to identify potential variation in congestion over weekdays and weekend. 

For a quantitative analysis, actual speed data was used to construct daily spatiotemporal 

maps to reveal congestion patterns at a more granular level, where congestion is 

represented as “cloud” in the spatiotemporal domain. Future work will be focusing on 
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deep learning of congestion patterns using Convolutional Long Short Term Memory 

(ConvLSTM) networks. 
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Chapter 1 Introduction 
 

Traffic congestion is recognized as a major problem in urban areas today (Ma et 

al., 2017), (Fouladgar, Parchami, Elmasri, & Ghaderi, 2017) and since most people travel 

routinely every day, it is a problem that is being investigated routinely.  Major planning 

and detailed statistical work seem to be the best methods to address urban traffic 

congestion problems.  The problem will worsen as more vehicles are added to the traffic 

network every day.  The types of problems that are seen on urban interstates include 

accidents, merging and exit congestion, stalled vehicles, erratic driving habits, i.e. 

continually switching lanes or braking too hard, and rubbernecking when some event 

does occur.  The need to identify the onset of congestion is crucial to alleviating the 

problem. When the beginning of a problem can be identified, congestion flow can be 

predicted, with enough notice to communicate the congestion to travelers and commuters 

in order to offer opportunities for a change in route. The Georgia Department of 

Transportation has a network of cameras that record the actual average speed of vehicles 

in a specific lane at a snapshot of time, the percent occupancy of each lane, and the 

number of vehicles in each lane.  Using the real data which can be obtained every minute 

from the Georgia Department of Transportation (GDOT) Navigator website, the onset of 

a problem can be predicted.  The data from the GDOT Navigator system is reliable, 
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timely and available at every location equipped with a camera.  The proposed algorithm 

will preprocess the data, analyze it, identify the onset of the problem and predict where 

the traffic congestion will flow.  When a problem is developing and the influx of heavy 

traffic becomes evident from the algorithm, steps can be taken to alleviate the potential 

bottleneck from vehicles stalled in traffic.  Atlanta’s system of informational overhead 

signage can be changed electronically to advise travelers of traffic conditions. When 

travelers are aware that one area is congested for a short time, they can elect to travel a 

different route. In addition, traffic inflow can be controlled by the system of on ramp 

access lights.  As traffic is forecast to become congested on one part of a system, 

controlling future access will possibly alleviate the problem.  Care has to be taken 

though, because traffic can become backed up on the access ramp.  This problem clearly 

has many facets.  The algorithm can keep up with all facets of the problem and suggest a 

solution.         

The algorithm also identifies recurring patterns on a temporal and spatial basis, 

i.e. certain days of the week and certain hours of the day are more congested than others 

and certain parts of the network tend to have more congestion than other areas. On the 

planning level, benefits can be obtained from identifying recurring patterns on particular 

days of the week and certain hours of the day and identifying where congestion patterns 

are most severe. Funding can be prioritized to tackle the bottleneck locales, perhaps to 

automatically reroute traffic under certain conditions and to design a new traffic 

configuration.  Communicating the recurring patterns to residents and commuters may 
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also change commuter behavior, i.e. commuters may choose to change work hours and 

choose to travel during non-peak traffic hours, and thereby reduce traffic congestion 

during traditionally peak travel hours. The data from GDOT is being downloaded every 

five minutes now. This data will be analyzed and stored for future predictions.  The 

learning set from a convolutional neural network will be used to predict future traffic 

results for five minutes up to one hour.  These predictions will be mapped to a GIS 

(Geographic Information System) map of the traffic system of Atlanta to show where the 

traffic is congested.  It is planned that these maps will be updated every minute and can 

be accessed by Georgia Department of Transportation for their planning as well as by the 

general public.  It is suggested that travelers can make much better decisions about travel 

routes as well as travel times if they can see the future possibilities.  It is also suggested 

that the department of transportation can use the results of the mapping to turn on and off 

ramp access metering for better control of inflow and outflow to the system.
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Chapter 2 Literature Review 
 

Traffic prediction of congestion is not new or revolutionary. Understanding 

congestion patterns is an integral part of the attempt to find local solutions for critical 

bottleneck sections. Ever since the 90’s studies have been carried out to quantify and 

forecast traffic patterns (Davis, Nihan, & Hamed, 1990), (Dougherty, Kirby, & D., 1993).  

(An, Yang, Wang, Cui, & Cui, 2016) defines types of congestion as recurrent or non-

recurrent with the emphasis on identifying recurrent congestion.  Recurrent congestion 

identification could benefit commuters and city planners.  Causes of non-recurrent 

congestion are identified as accidents, breakdowns, traffic control and it is noted that 

non-recurrent congestion occurs less frequently than recurrent congestion.  Causes of 

recurrent congestion are identified as occurring at a certain site and at a certain time of 

the day or certain days of the weeks.  Causes of recurrent congestion are also identified as 

high traffic, not enough capacity for the traffic, signal control is inadequate, infrastructure 

is not sufficient for the traffic.  An (An et al., 2016) uses floating cars, vehicles (taxis, 

cars, and buses) equipped with GPS data and analyzes the data based on location in a grid 

that is based on the links in the actual traffic network.   An (An et al., 2016) chose the 

floating car because of lower cost, mobility and coverage as compared to traffic cameras, 

loop detectors and other types of traffic detectors.  The location of the floating car is 

mapped to the network grid.  By mining the speed, grid location, and time of the floating 

car, an algorithm is derived to determine congestion or non-congestion.  Then the 
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congestion locations are classified as recurring or non-recurring.  Next, for recurring 

congestion, the propagation to other grids is identified.  Each grid state is determined, and 

the method can model real-world conditions and can be applied to networks that have no 

other means of identifying traffic congestion. 

Ruder (Ruder, 2016) explains the various methods of Convolutional Neural 

Network optimization, specifically gradient descent optimization algorithms, and 

describes the most commonly used algorithms, some pitfalls, and specific behaviors of 

algorithms. Gradient descent is one of the most frequently used optimizations and there 

are different implementations to optimize gradient descent. Most of the optimization 

algorithms are basically black boxes, and the user may or may not know how they 

actually work. Gradient descent has three variants, batch, mini batch, and stochastic 

gradient descent, and multiple algorithms, including Adam, AdaMax, and AdaDelta.  The 

optimizer algorithm should be chosen based on the characteristics of the dataset, and the 

size of the dataset. Accuracy is a tradeoff for expediency in the choice of optimization 

algorithms. 

Davis (Davis et al., 1990) used an approach based on statistical pattern 

recognition algorithm to forecast the occurrences of traffic bottlenecks. Many of the 

current algorithms are not anticipatory, and therefore, act too late to prevent the 

bottleneck. This approach attempts to anticipate the bottleneck, with time to take an 

action. For example, once a prediction is made of an impending bottleneck, an action can 

be taken to govern the traffic entering the highway ahead of the soon-to-occur bottleneck. 
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The algorithm was tested and yielded between 82 to 96 percent correct in time-series 

prediction, while for pattern recognition of bottlenecks prediction yielded results between 

45-89 percent correct. Since the work was still preliminary, Davis (Davis et al., 1990) 

claimed that the algorithm needed to be refined to other combination of variables for the 

forecast to be more effective.   

Soon after, Dougherty (Dougherty et al., 1993)published an article that uses the 

neural network in recognizing and predicting traffic congestion. This work is different 

than Davis (Davis et al., 1990) because of the use of neuro computing in assisting in short 

term forecasting. Several other neuro network based prediction of traffic speed and 

congestion followed suit (Lyons, Hounsell, & Williams, 1996),  (Huang & Ran, 2003)).  

Dougherty (Dougherty et al., 1993) uses the neural network to generalize the patterns of 

traffic flow, to recognize congestion and forecast short term flows of traffic.  Huang 

(Huang & Ran, 2003) proposes a model for predicting traffic flow under varying 

conditions.  The original research focuses on adverse weather from floods to ice, but the 

authors noted that the same research could be applied to construction or other adverse 

incidents that occur.  Travelers could use the precise speed prediction for planning short 

trips.  Input of traffic speed for this project comes from DOT sensors under the pavement 

and the weather conditions from the National Oceanic and Atmospheric Administration 

website.  Huang (Huang & Ran, 2003) states the error mean between the ground truth 

speed and the predicted speed is 4.7 and the standard deviation is 4.46 which makes the 

results reasonable.  Lyons (Lyons et al., 1996) recognizes that knowledge of the status of 
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the traffic status comes from an ever increasing use of monitoring systems supports 

traffic management systems.  The challenge is in finding an effective way of using the 

increasing data.  Lyons (Lyons et al., 1996) use the back-propagation technique with the 

multi-layer perceptron architecture to forecast the onset of congestion.  

Zhao (Zhao, Xu, Guo, & Gao, 2016) explores Convolutional Neural Networks as 

a model to more accurately learn or predict unknown relationships in knowledge graphs, 

as compared to other traditional models. There are many types of knowledge graphs, and 

the primary goal of each is to understand the interconnections of entities, i.e., the 

relationships of the entities. Knowledge graphs are often incomplete, with entities or 

relationships undocumented, which some learning models do not accommodate and fill in 

the gaps. Convolutional Neural Networks can predict relationships that may not be 

detailed sufficiently within the knowledge graph. Numerous models have been devised, 

to understand the complex patterns of the interconnections of entities within a knowledge 

graph, however, the Convolutional Neural Network appears to outperform these models. 

 Zhang (Zhang, Zuo, Zhang, & Chen, 2011) produce a map which shows the 

traffic congestion of the highway system.  Based on floating-car data, they explored how 

to map the congestion patterns to a map of a city highway system. 

Garg (Delhi et al., 2014) advocates vehicle type as the basis for traffic congestion 

detection.  In developing countries, conditions vary greatly on the highway systems and 

travelers use many type of vehicles, such as motorcycles, bicycles, cars, trucks, and 
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buses.  The congestion for the trucks, buses, and cars is different from the congestion for 

2 or 3 wheeled vehicles.  The study uses smartphone technology to analyze data for road 

and traffic monitoring.  Different traffic scenarios are used to predict traffic congestion 

levels.  The study involves two locations in Delhi, one interior and one outer area.  The 

study obtains 90 percent accuracy in vehicle classification   The study advocates use of 

different scenarios as wrecks, potholes, traffic lights as well as the type of vehicle, the 

time of day as features for traffic congestion.  This approach predicted more than 80 

percent accuracy for congestion areas for each vehicle type. 

Different mathematical techniques have also been employed to study traffic 

congestions as well. Pongpaibool (Pongpaibool, Tangamchit, & Noodwong, 2007) used 

manually tuned fuzzy logic in evaluating road congestions in Thailand. However, the 

primary focus of the work is to distinguish between the different levels of road 

congestion using the adaptive-neuro fuzzy algorithm. The work did not lead to field 

application or forecasting, but the authors did hint that congestion is a complex process 

and is not only spatial dependent but also temporally dependent.  

Lee (Lee, Hong, Jeong, & Lee, 2014) use a more current data collection 

technology to study congestion patterns. An Intelligent Transportation System (ITS) was 

used to collect near-real-time traffic data. It is the opinion of the authors that this method 

of data collection is much more efficient that the floating car method. The data that was 

collected was then used to model and predict the decongestion times. An algorithm was 

written to recognize the congestion pattern spatially and temporally and associate the rate 
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of change of congestion to similar events and correlate the decongestion times.  Lee (Lee 

et al., 2014) are interested in making predictions about changing traffic congestion and 

advocate the use of historical patterns compared to current congestion to determine when 

the congestion will dissipate.  Lee (Lee et al., 2014) use spatiotemporal chains to describe 

congestion for branches of the road.  They determine the historical pattern that is most 

similar to the current pattern to predict the end of the congestion.  In their validity testing 

the best-case error was five percent and the average error was 17 percent.  

Another study on congestion pattern was done by Wen (Wen, Sun, & Zhang, 

2014). This study was done on a network level. However instead of evaluating individual 

sections within the network, an index called the Traffic Performance Index (TPI) was 

used as an aggregated number for congestion measurement. Floating car data were 

utilized to observe the annual TPI for advance forecasting. The work was focused more 

on large scale annual events based forecasting and does not provide local level analysis.  

In a more recent work, He et al. 10) published a paper to assess traffic congestion 

based on the speed performance index. Their work was done at the network wide level 

and is therefore significant for the current work. The speed performance index was used 

in this work as a measure of congestion. The work uses information from loop detectors 

in the traffic system to identify road segment congestion. The article did not address the 

need for an algorithm for network level prediction, but it does show the attempt to 

understand traffic congestion at a roadway network level. He (He, Yan, Liu, & Ma, 2016) 

note that many cites have serious traffic congestion problems and traffic management 
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systems are effective approaches to control congestion.  In order to manage the system, 

the agency has to have an accurate understanding of time and location of congestion.  He 

(He et al., 2016) state that traffic congestion is classified in different ways in different 

locations and propose that speed performance index be used to measure congestion 

levels.   This index uses the average travel speed compared to maximum speed limit.  

This paper determines the congestion index to measure the congestion.  He (He et al., 

2016) analyze the seasonal as well as weekday and weekend days’ effects on traffic 

congestion.  This result provides planning data for future traffic management. 

Hashemi (Hashemi & Abdelghany, 2015) presented an approach that estimates 

and predicts traffic conditions with decision support capability for addressing congestion 

in urban settings. The work focuses on the management strategies where the genetic 

algorithm was used to evaluate the best congestion managing strategies. Conditions that 

are defined as congested are not explicitly studied, but rather used as conditions to trigger 

options for traffic management options and decisions. Hashsemi (Hashemi & 

Abdelghany, 2015) concludes that deficiencies exist in real time traffic management 

systems and develops a simulation to illustrate a proactive management system to achieve 

benefits by keeping the deficiencies under a certain level.  Deficiencies listed include 

accuracy of prediction, time to make decision and managed area coverage.  Other factors 

as demand and travelers’ behavior are being investigated in the simulation.  Min uses a 

model with location, time and a relationship to other links in the network.  Min (Min, 

Wynter, & Amemiya, 2007) attempt to predict the traffic flow on the connecting links. 
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 Rempe (Rempe, Huber, & Bogenberger, 2016) attempted to study congestion 

using the floating car (FC) data and clustering analysis to analyze portion of the 

congestion within the network at particular time. This strategy was employed on the road 

network of Munich, Germany with success. Rempe (Rempe et al., 2016) pointed out the 

spatial and temporal features of their methodology and how congestion is related spatially 

and temporally. However, Rempe (Rempe et al., 2016) cautioned that the method had 

only been applied to one location and should be applied to other locations that may have 

differing bottleneck locations and congestion patterns. 

 Nguyen (Nguyen, Liu, & Chen, 2017) proposed an algorithm which constructs 

causality trees from congestion and estimate their propagation probabilities based on 

temporal and spatial information of the congestion. Their algorithm first identifies the 

spatial and temporal relationships between congested sections and then constructs a sub-

tree algorithm to observe recurrent congestion patterns. The dynamic Bayesian network 

approach was employed to produce probabilities of congestion given particular patterns.  

Nguyen (Nguyen et al., 2017) try to determine the location of bottlenecks and flaws in 

the traffic network designs. 

 Fouladgar (Fouladgar et al., 2017) used a model where the congestion state of 

each node is predicted by the congestion states of the neighboring links.  Fouladgar 

(Fouladgar et al., 2017) note that no historical data is required to run this model. Their 

goal is to provide real-time feedback for traffic flow from each node.  They analyze 
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traffic flows over one day, during rush hours, and in light-traffic hours for a single 

network point.  The advantage from this model is that real-time response is achieved. 

 Tran (Tran, Bourdev, Fergus, Torresani, & Paluri, 2015) use a 3-dimensional 

convolutional neural network for spatiotemporal learning to develop a generic video 

descriptor.  They conclude that the model is very simple to use and is efficient and 

compact. This model could be used if videos of traffic are used in the analysis. 

 Koesdwiady (Koesdwiady, Soua, & Karray, 2016) cited numerous statistics 

concerning the severity of future traffic problems.  They noted that the number of 

vehicles on the roads will double by 2050 and that building more roads will not alleviate 

the problem.  They propose Intelligent Transportations Systems in order to develop a 

smart network for travel.  Because adverse weather affects 23 percent of road crashes 

Koesdwiady (Koesdwiady et al., 2016) proposed a system to combine weather and traffic 

history and use a Deep Belief Network (using Restricted Bolztmann Machines) to enable 

better decision about traffic flow.  They further propose to update travelers with 

continuous road information.  This update would allow better decisions about route 

planning, time to begin trip and even which days of the week are good travel days. Their 

conclusion is that the data based prediction system produces better traffic management 

strategies. 

Ma (Ma et al., 2017) use an image input to a convolutional neural network 

(CNN).  The image is constructed from a time-space matrix with speed data in 
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kilometers.  The x-axis of the matrix is time intervals and the y-axis is spatial intervals.  

This matrix is converted to a grayscale image for input into the CNN.  Ma (Ma et al., 

2017) detail the construction of the CNN and describe how they tune the CNN 

parameters.  The model is trained to an actual speed and then is trained to three categories 

of speed:  heavy, moderate and free-flow traffic.  With these categories, they obtained 

accuracy ratings above 92 percent on both traffic networks studied.  They conclude that 

this model can learn the spatiotemporal relations and predict accurate results.  Ma, et. al., 

do not specify the accuracy results when they predict the actual speed.  

Vallet  (Vallet & Sakamoto, 2015) introduced a multi-label cost function and a 

prediction method for multi-label classifications in deep convolutional neural networks.  

They (Vallet & Sakamoto, 2015) used a dataset of animation images and achieved 75.1 

percent precision and 66.5 percent accuracy.  They (Vallet & Sakamoto, 2015) were able 

to identify more than one animation figure in an image.  This work is interesting because 

it might be adapted to classifying to a range of speeds, for example, 55 plus or minus 5 

miles per hour. 

Liu (Liu, Wen, Yu, & Yang, 2016) modified the Softmax loss algorithm to 

increase feature learning by adjusting the angular margin constraint between the classes.  

They (Liu et al., 2016) demonstrated a geometric interpretation with a simplified example 

of two weights. They (Liu et al., 2016) concluded by adjusting the margin to be larger, 

they could make the decision margin larger and that the Large-Margin Softmax loss had 
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advantages over the Softmax loss function used in current Convolutional Neural 

Networks. 

  This work will propose a framework that collects real time data, identifies 

congestion location, i.e. bottleneck segments and analyzes network-wide spatial and 

temporal patterns of congestion. The approach taken in this study is similar to that of 

Rempe (Rempe et al., 2016) where clustering analysis will be done to segregate the 

recurring congestion segments, but differs in the type of data, and clustering algorithm 

and analysis.  This work also proposes a model using a convolutional neural network 

similar to that of Ma (Ma et al., 2017) which will be used for input into a real-time 

application to predict speed of traffic in a short time period. 

This article consists of sections that addresses the data acquisition and processing, 

followed by the data analytics, results and findings and conclusion. A major part of the 

work consists of data acquisition and therefore, this section will first be discussed.    
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Chapter 3 Data Acquisition and Processing 
 

Congestion data are typically collected using GPS-equipped mobile vehicles (An 

et al., 2016)or floating cars (Xu, Yue, & Li, 2013), (Wen et al., 2014). These methods are 

reliable, but require major effort and do not provide real-time congestion information. Xu 

(Xu et al., 2013) use floating car data to identify traffic congestion patterns as a 

spatiotemporal event.  More recently, Zhao (Zhao et al., 2016) use Remote 

Transportation Microwave Sensors data as input to the analysis system to discover the 

congestion pattern of each node.  They match real-time conditions with the congestion 

patterns to detect traffic congestion.  

It was decided to work with Georgia Department of Transportation to obtain data 

feeds from the 2,284 cameras aimed at the interstates. This method of data collection is 

cost effective because it uses existing cameras deployed throughout the major freeway 

system, and therefore ensures a good network coverage around the metro Atlanta area. 

The data from Georgia Department of Transportation is downloaded from the Navigator 

website (https://navigator-c2c.dot.ga.gov/).  The files that are used in this study are 

detectorDataResponse.xml (used to collect current data), detectorInventoryResponse.xml 

(used for identification of the camera location and characteristics), and eventsUpdate.xml 

(which lists all events that happen at each location).  The detectorDataResponse.xml is 

downloaded every five minutes to capture current data.  This data is pre-processed and 
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stored in the database.  The data from the detectorInventoryResponse.xml is downloaded 

every week and pre-processed for storage in the database.  Although the camera 

information may not change every week, cameras can be added, lanes can be added and 

other changes can happen.  Data inventory information must be current in order to 

analyze traffic patterns at those locations.  It is planned to compare these events with 

actual congestion data from the eventsUpdate.xml to see the effect of events on the traffic 

flow. 

The data is continuously updated every minute and therefore is near real time 

when processing is done immediately following download.  Because the data is not 

stored, the detector data response xml files that contain the data are downloaded every 

five minutes. This file, the detectorDataRresponse.xml, contains data in the following 

format:  date collected, time collected, detector id (id for camera), detector name, detector 

Status (0, 1, 2, 3), detector lane number (each camera has from one to 8 lanes), lane 

vehicle count, lane occupancy, and lane vehicle speed. 

There are 2,283 cameras (and one test camera) in operation 24 hours a day, 365 

days a year spread over segments of the interstate highways in the Atlanta area. These 

cameras provided a reliable, continuous way of obtaining data.  These downloads do not 

rely on Global Positioning System (GPS) data or floating car data and are therefore 

deemed more reliable. Originally the detectorDataResponse.xml file was downloaded 

every five minutes for 66 days which provided sufficient data to analyze spatially and 

temporally in order to determine historical congestion areas and times.                                                                                                               
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Data obtained from the Navigator website have to be spatially related to the 

segment of roadway where the camera is deployed. The location of the cameras is 

indicated by a dot in Figure 1.  The cameras are located on both sides of the highway, so 

that both directions can be recorded.  To spatially relate the data, an inventory file was 

used which details the geographical location of the cameras. This file includes 

information such as detector id, detector name, latitude, longitude, route designator 

(name of highway), linear reference (mile marker on highway), link direction (direction 

camera is pointing), cross street name, detector type, approach lane name, lane number 

and last update time as shown in Figure 2.  The camera name is used to link the data to a 

map of the interstate system using ARCGIS system which is a geographic information 

system for use with map data.  
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Figure 1:   ARCGIS system showing camera locations on Atlanta’s network system. 

 

 The location of the cameras is indicated by a dot in Figure 1.  The cameras are 

located on both sides of the internet, one recording in one direction and the other camera 

in the reverse direction. 
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Figure 2:   GDOT file for inventory data for each camera. 

 

 In Figure 2, data file layout is shown for one of the downloaded file, the inventory 

file.  Note that the lane numbers are in the binary format:  in this example, lane numbers 

are 01000, 10000, 00100, 00010, and 00001 indicating this section of the interstate has 

five lanes.  The approach name indicates the type of lane it is, for example exit ramp or 
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through lanes.  The file also has the cross street name (not shown in the figure) indicating 

the location of the camera on the interstate.  This file is used to determine the total 

number of lanes on which the camera focuses and is compared to the actual data which 

may not have all the lanes recorded (if there is no traffic in a lane, the lane is not 

recorded). 

Initially, the downloaded data were parsed into a database, associating the data 

with its geographical locations. Preprocessing the data is necessary to account for missing 

data, cameras out of service and added camera locations. The algorithm for dealing with 

the missing data is as follows:  Case 1: Data missing for one of the camera lanes, use 

average of other lanes’ speed.  If a camera records no data for a lane, data will be missing 

for that lane.  Case 2:  All lanes are present but some data is missing, i.e. have occupancy 

and vehicle count but missing speed, algorithm uses average of other lanes’ speed.  Case 

3:  Missing all camera data (camera is not working, status is 0, 2 or 3) algorithm takes 

average of data from cameras on either side of the missing camera (based on map GDOT 

name) or uses the milepost where camera is located to determine which camera to use (if 

one is close and other is distance algorithm uses values from closer one).  If distance < 

1320 feet (1/4 mile) algorithm uses closer camera or interpolates the values from the two 

cameras.  The algorithm to account for missing data is one of the most important parts of 

preprocessing the information.  The missing data are tracked so that any future questions 

could be answered about what is changed to account for missing data.   
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If the data is not pre-processed correctly, it will not give good results.  An 

example of poorly processed data is shown in the graph for Nov 26, 2016 as shown in 

Figure 3.  Missing speed was changed to speed limit rather than average of other lanes or 

average of two nearest cameras.  This graph shows a column of dark all the same shade 

indicating that a speed of the 110 kilometers is used for the missing speeds.  This picture 

clearly demonstrates the need for clean data to ensure the algorithm to forecast traffic 

flow can work properly. 

 

 

Figure 3:   Example of a link that has not been properly processed. 
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In Figure 3 the y-axis represents the camera location of the 532 cameras on 

Interstate 285 and the x-axis represents the five-minute increment of the data collection. 

The pixel at (x, y) is the speed recorded at location x and time y.  The bar on the right 

hand side shows the scale of colors from white (zero kilometers) to black (190 

kilometers).  Thus areas of lighter shades indicate congestion. 

In order to visualize the data that has been collected, statistical properties such as 

the mean and sample variance were computed for each camera, each lane, and each 

category (vehicle count, occupancy, and speed) for each time slice (five minutes) for each 

day.  A pseudo-code of the statistical algorithm is provided as follows: 

   Loop: 

 For camera id, convert date to day of week 

               Loop by day of week 

               Loop for number of lanes for camera 

               For each lane    

                   write vehicle count, occupancy, speed 

                   reshape array to 2-dimenstional array 

   For range 0 to 7 (number of weekdays) 

         Slice array by day of week 
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        Slice resulting array >= beginning time and  < ending time 

        Use array to calculate mean and sample variance 

   Slice resulting array by lane 

   Write results to database. 

 The results from the data analysis will be compared to the actual incident file to 

determine the cause of the traffic slowdowns.  The incident file contains all of the 

incidents that have occurred from planned events to accidents.  It is extremely useful to 

correlate the traffic flow dynamics with what actually happened at the site. 

 The data incident file is very large and cumulative.  The kinds of events described 

in this file can adversely affect traffic in surrounding areas and are necessary in analyzing 

traffic patterns.  The GDOT data download has these incidents recorded which is an 

advantage for determining the cause of congestion.  If no record of an incident is readily 

available, there is no way to connect congestion levels with actual events.  
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Chapter 4 DATA ANALYTICS  
 

The first analysis of the collected data allowed the visualization of the traffic 

flow.  Congestion was observed and defined for average speeds of less than 10, 20, 30, 

and 40 miles per hours and sample variances of 5, 10, 15, and 20 MPH. The data that 

corresponds to the average speed ranges and variances were flagged and stored.  If 

average speed <= cutoff and sample variance <= ½ of the cutoff, then a flag was set at 

that location. 

Each flag indicates one congestion event. The frequencies of the flags were 

determined for each individual camera and time. These flagged data were then written to 

a file for further processing. For spatial comparisons of locations, the algorithm selects 

two individual cameras as shown: 

   Loop 

        Slice array >= beginning time and < ending time 

              Loop (by camera with more lanes) 

                   If the date and time for the cameras match 

                       Subtract data from second camera from first camera 

                            For each category (vehicle count, occupancy, speed) 
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   Plot the data 

This algorithm computes the mean and sample variance of the differences for 

each camera every weekday for each lane. The mean and sample variance across all the 

lanes for each camera, date, and five-minute interval were also calculated. 

In addition to the temporal differences for a camera, spatial differences were 

computer for selected cameras.   

 

Figure 4:    Spatial difference for two cameras. 

 

These plots of distributions allow visualization of the data that has been collected 

and lead to further analysis. Since any two cameras can be tested, this gives a good 
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spatial view and comparison for the camera of interests.  In Figure 4, the two cameras 

selected are close to each other and the small differences in averages of vehicle counts 

are expected.  If the differences were large, an event has caused a stoppage of traffic.  

Next the temporal differences for one camera was calculated.  The temporal difference 

shows how the mean and variance change over time. Here, the algorithm was written to 

allow the selection of different time intervals for comparison, i.e. five minute intervals to 

12 hour intervals. The mean and sample variance of the difference of two intervals for 

each of the three categories vehicle count, occupancy, and average speed for each lane 

were obtained. 
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Figure 5:   Plot of distributions for time differences for two cameras. 

  

In Figure 5, the number of vehicles for the two cameras chosen were close to the 

average while the occupancy percentage and speed varied more.  In this Figure 5, time is 

in 24 hour time and lane numbers are binary, for example, 6 lanes are represented as 

100000, 010000, 001000, 000100, 000010, and 000001 in the downloaded file. 

This data can be analyzed spatially and temporally. In the temporal analysis, data 

from the same camera were subtracted for two different times, i.e. the beginning time 

from the data for the ending time for a selected interval.  The mean and sample variance 
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were found by using arrays produced by the subtraction.  The program was written to 

allow selection of the length of time segment to check, for example, one hour, thirty 

minutes, etc. on a sliding scale beginning with the five-minute period after midnight to 

the five-minute period before the next midnight. With these layers of time segments, the 

flow of congestion from one-time period to the next can be seen.  Thus the congestion as 

it flows through the time dimension can be visualized. 

For the spatial analysis, cameras may not have the same number of lanes and 

could not be compared lane by lane.  However, statistics across lane data was used for the 

comparison purposes.  For the speed data, the average speed of all the lanes is used; for 

occupancy data, the average rate is used, and for vehicle count, the sum is used.  The 

selection of any two cameras for the spatial comparison was allowed in the algorithm.   

In this study, the severity of a congestion segment was identified by the average 

speed of the segment. The speed of 20 miles per hour was chosen to indicate severe 

congestions while the speed of 40 mph indicates moderate congestions. The DBSCAN 

algorithm (Ester, Kriegel, Sander, & Xu, 1996) is used to perform the clustering analysis. 

This analysis groups the congestion data to a few different clusters. DBScan does not 

require subjective predetermination of number of clusters for the analysis and is therefore 

suitable for this application. The benefit of performing the proposed clustering analysis is 

that bottlenecks and their immediate influences can be identified based on the cluster 

numbering assigned to the individual cameras. In addition, these clusters also indicate 

areas of the highway system with recurrent congestion.  These cluster locations were 
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mapped to GDOT system using ARCGIS.  Ester (Ester et al., 1996) concludes that the 

DBScan algorithm is outperforms CLARANS by a factor of 100 when classifying 

clusters of arbitrary shapes.  

 

Figure 6:   Monday 4:00 PM until 6:00 PM with speeds less than 40 MPH. 

 

The clusters in Figure 6 indicate that congestion forming on interstate 285 and 

outlying areas to the northeast with one cluster on the west side of Interstate 285.  Since 

the 4:00 until 6:00 PM is normally the time when commuters leave Atlanta the clusters 
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support the idea that roads leaving the urban area are more congested.  This graph is 

produced for the average of all the Mondays in the study. 

. 

Figure 7:   Friday from 1:00 PM until 4:00 PM with speeds less than 40 MPH. 

 

 The congestion clusters Friday from 1:00 PM until 4:00 PM indicate that more 

traffic is leaving the urban area (Figure 7).  It is noted that most of the congestion is 

either on Interstate 285 which is the ring or in outlying areas as Interstate 75 to the 
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southeast, 575 to the northwest, and 85 to the northeast.  Since Friday afternoon is 

traditionally a time to leave earlier for the weekend, this cluster pattern seems to indicate 

that pattern. 

 

Figure 8:   Congestion clusters Friday from 4:00 PM until 6:00 PM with speeds less 

than 40 MPH. 

 

The congestion patterns on Monday and Friday at the time period of 4:00 PM 

until 6:00 PM indicate that certain areas tend to be more congested than others and most 
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of the congestion is on interstate 285 (the perimeter interstate).  It is noted also that traffic 

on the outskirts of Atlanta is heavy (Figure 6 and Figure 8). 

 

 

 

Figure 9:   Clusters of congestion Wednesday with speeds less than 20 MPH. 

 

 Traffic clusters for the day Wednesday shows congestion inside the city as well as 

on the perimeter interstate.  Wednesday is traditionally a heavy traffic day for 

commuters, Figure 9 shows one cluster in downtown Atlanta, two on interstate I 85, the 

ring around Atlanta, one down to the southeast and the last at the coordinates (0, 0) which 

indicate the camera inventory file did not have a longitude and latitude location but a 

mile marker post instead.  This problem is dealt with by mapping the camera name to the 
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GIS map with ARCGIS in python.  In Figure 9, all of the eight Wednesdays in the 

downloaded files are used. 

 

Figure 10:   Congestion comparison for Friday from 4:00 PM until 6:00 PM with 

speed less than 20 MPH. 

 

 For the weekday Friday (Figure 10), traffic speeds less than 20 show heavy 

congestion in the interior of Atlanta as well as on the outskirts.  Again the cluster at 

coordinates (0, 0) which indicate the camera inventory file did not have a longitude and 

latitude location but a mile marker post instead which is not mapped in the graph.   
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Figure 11:   Congestion comparison for Wednesday from 6:00 PM until 8:00 PM 

with speed less than 40 MPH. 

 

 Figure 11 clusters indicate moderate congestion from 6:00 until 8:00 PM for a 

middle of the week workday.  These figures were constructed using the DBSCAN 

clustering algorithm.  This algorithm was chosen to find the number of clusters given the 

parameters and to discard the noise for data less than the parameters given. 
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Figure 12:   Clusters for Wednesday for speeds less than 20 MPH. 

 

Figure 12 shows the number of clusters for the average of the Wednesdays in the 

study.  This figure indicates congestion in the interior urban area possibly indicating that 

commuters do not leave as early on Wednesday. 

The next matrices indicate the level of congestion on the system.  Each location 

on the matrix represents the level of congestion either heavy (2 which is dark), moderate 

(1 which is gray) and free-flowing represented as zero (which is white).  The matrix was 

constructed using weekday and time data for the levels of congestion at that time for each 

camera.  The entries in the table are xij = level of congestion where i is the camera 

location and j is the time.  Then the table is configured to be 48 x 48 in order to show the 
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congestion levels.  This matrix is the first matrix considered for evaluation using a 

convolutional neural network.  

 

Figure 13:   Comparison of congestion for all locations all Mondays at 4:00 PM. 

 

Although locations cannot be directly intuited from Figure 13, the severity of 

congestion can be.  In Figure 13, black indicates heavy congestion, gray moderate 

congestion and white indicates free flowing traffic.  These matrices are built for every 

five-minute period for each of the days in the database.  Then the matrices are built for 
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every five-minute period for each weekday in the database.  Viewing these matrices as an 

animation plot clearly shows the patterns and severity of congestion in the network for 

that selection. 

 

Figure 14:   Comparison of congestion for all locations Wednesday at 4:00 PM. 
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Figure 15:   Comparison of congestion for all locations all Fridays at 4:00 PM. 

 

 Figure 13, Figure 14, and Figure 15 show the relative congestion for the three 

weekdays, Monday, Wednesday and Friday at the same time of day for all locations in 

the network.  The matrices use categories of congestion:  heavy is dark, moderate is gray 

and free flowing is white.  Each matrix is composed of the average speeds for the total 

number of Mondays, Wednesdays, or Fridays in the study data. 

The second part of this study predicts the average speed within the next timeframe 

(from a period of 5 minutes up to an hour).  For this study, data was downloaded for 60  
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days which provided sufficient data to analyze spatially and temporally to determine 

historical congestion areas and times and to provide test data to predict speeds in the near 

future (up to an hour). 

The traffic speeds were averaged for each camera (traffic location determined by 

longitude and latitude of the camera - obtained from the detectorinventoryresponse.xml 

file at the same web site) and time of observation.  The individual speeds of each lane 

were averaged to get one speed for each camera at the five-minute snapshot.  A matrix 

with rows as camera location and columns as time periods of one day (from midnight 

until midnight – giving 288 five-minute time periods) was constructed with xij = average 

speed for the lanes.  This matrix has dimensions of 2284 x 288.  This matrix was 

separated into 4 matrices for the different segments of the interstate system.  For the 

purpose of this project, the first three sections are used as training data.  The fourth 

section is reserved for testing.  An image of this matrix for the date November 28, 2016 

for the section consisting of interstate 285 is shown in Figure 16. 

The data from the matrix sliced as 12 time periods (one hour) is used for training 

the Convolutional Neural Network.  This slice uses the sequential speed data.  The label 

for the training is sliced from the same matrix at the ith time period in different training 

episodes.  This project uses the 14th time period only.  Training was done for 100 epochs.  

The program uses a stop routine when the training data becomes over fitted.  
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 This project demonstrates the possibilities of prediction with the deep learning 

network.  As the epochs are increased, the accuracy improves.  It is theorized that as 

more hidden layers are added, the accuracy will also improve.  One Note:  this project 

does not use a large enough sample to obtain good results from a Convolutional Neural 

Network.  The purpose of this project is to demonstrate the feasibility of predicting 

speeds using a neural network. 

 

Figure 16:   Plot indicating level of congestion for the cameras on Interstate 285 for 

November 28, 2016.   
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In Figure 16 congestion is indicated by the white areas marked with arrows,  

because the speeds are lower.  This plot gives a good representation of the congestion 

patters by camera locations (row) and time (columns).  

 

Figure 17:   Plots indicating different levels of congestion for the cameras on 

Interstate 285 for December 9, 2016.   

 

For the plots in Figure 16 and Figure 17, November 28, 2016 was a Monday and 

December 9, 2016 was a Friday.  The lighter areas indicate congestion.  Note: speeds are 

in kilometers. The areas of congestion are in similar locations for the two days indicating 
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a possible bottleneck location.  These pictures of the congestion were used as input to the 

convolutional neural network. 

Keras (Charles, 2013) based on Tensor Flow in Anaconda is used to construct the 

convolutional neural network.  Highway segments one, two and three (representing a 

period of 62 days’ data) are used as training data and segment four (cameras located on 

Interstate 75 and various other highways) is used as testing data.  From two to four 

convolutional layers along with one fully connected layer are used in training.  It is noted 

that this network trains to an integer speed.  Random guessing giving an accuracy of 0.5 

percent (from one to 190 kilometers) compared with an accuracy greater than 45 percent 

gives an 8900 percent increase.  If the accuracy is calculated using a range of 10 (i.e.  for 

a prediction of 55, if ground truth is from 50 to 59, prediction is considered correct, the 

accuracy would improve as it did for Ma (Ma et al., 2017) when categories of predictions 

were used to determine accuracy. 

 Actual data from the GDOT website is downloaded every five minutes and 

processed for use.  The last time frame that has been downloaded will be used as input to 

the CNN using the trained results.  Thus the prediction could be used by travelers to 

choose the best route to take.  If the predicted result is very different than the ground 

truth, an incident is possible and camera monitors should be checked to determine the 

problem allowing immediate notification of a system problem. 
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 The convolutional neural network has to be fine-tuned to get the correct results.  

The choice of optimizer, activator for each hidden layer, and loss function is critical to 

good results.  In addition, care has to be taken that the network is not over fitted.  

Overfitting is the result of obtaining a trained set that closely corresponds to the data used 

for training and will not be able to test data outside of the trained set accurately.  Thus the 

convolutional neural network must check for overfitting.  This study uses the function 

from (Charles, 2013)) called early stopping.  The format is: 

early_stopping = Early Stopping (monitor='val_loss', patience=3). 

This study uses the value of the loss function to determine when the test data accuracy is 

not improving indicating that the training function has begun to over fit.  Optimizer 

adadelta based on adam  (Adaptive Moment Estimation) (Ruder, 2016) one of the 

gradient descent optimization algorithms used in Keras (Charles, 2013) gives one of the 

best results in this training set.   Other optimizers tested include:  adam. adamax, adagrad, 

adadelta, stochastic gradient descent (SGD), and nadam.  All of these optimizers have 

advantages and disadvantages.  Choice of an optimizer depends on the characteristics of 

the image or data to be classified.  Keras documentation (Charles, 2013) has numerous 

loss functions including mean squared error, mean absolute error, mean absolute 

percentage error, mean squared logarithmic error, categorical hinge, categorical cross 

entropy, binary cross entropy (not suitable for more than two categories, that is labels, for 

training), and others.  It is necessary to evaluate the loss functions to determine which 

one that performs best on the dataset used for training. Activation for the hidden layers is 
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chosen to be RELU (rectified linear unit) since it allows for effective training on large 

datasets.  Available activations according to Keras, (Charles, 2013) are: ranh, sigmoid, 

linear, relu, elu, selu, softplus, softsign, and hard sigmoid.  Softmax is chosen as the 

activation for the fully connected layer because it is a categorical distribution and this 

study is classifying to categories.  Since the convolutional neural network is training to 

categories, the label data has to be changed to categories using the function to_categorical 

(Charles, 2013).  In addition, different batch sizes and numbers of epochs were used. 

This algorithm trains on 229,152 samples and validates on 26,970 samples (one 

slide of data of the image, one slide is equal to one time slice for example from 6:00 AM 

until 6:30 AM.  This data set is not large enough for training with a convolutional neural 

network, but it demonstrates the validity of training with it.    

Figure 18 shows the accuracy and error plots using adam as optimizer with 

categorical_crossentropy as loss function, RELU as activation for the hidden layers and 

softmax as the activator for the fully connected layer. 

 

Figure 18 :  Accuracy and error plots using adam, categorical_crossentropy, RELU, 

and Softmax. 
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Optimizer Loss 
function 

activation Batch size epochs loss accuracy 

adam Cat. entropy relu 128 11 0.2822 88.88% 

adam MSE relu 128 11 0.0213 89.00% 

adadelta MSE relu 128 21 0.0215 89.12% 

adamax MSE relu 128 11 0.0213 89.03% 

adagrad MSE relu 128 25 0.0270 87.46% 

adagrad Cat. entropy relu 128 10 0.0215 89.12% 

adadelta Cat. Entropy   relu 128 7 0.2898 87.79% 

adamax Cat. Entropy   relu 128 11 0.2831 89.00% 

adamax Cat. Entropy   relu 32 11 0.2745 88.91% 

adamax MSE relu 32 15 0.0212 88.91% 

adadelta MSE relu 32 12 0.0229 88.58% 

adam Cat. Entropy relu 32 12 0.0214 88.73% 

 

Figure 19:   Chart for results of tests with Convolutional Neural Networks. 

 

 In the results shown in Figure 19, the number of epochs is controlled by the early 

stopping routine.  All of the epochs were set to stop at 100, but each time the number of 

epochs is less than that in order to stop before overfitting.  The best accuracy is obtained 

with adadelta as optimizer and mean squared error as loss function and with adagrad as 

optimizer and catergorical-entropy as a loss function.  The second best is obtained with 

adamax as optimizer and mean squared error as loss function.  Both adadelta and adamax 

are gradient based optimizers that adapt the learning rate to the parameters (Ruder, 2016).  

All of the above tests were run using training base of one hour (which is 12 data points, 
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one every five minutes).  Another set of tests use 40-minute time frames for training and 

will train to the point at 10 minutes in the future.  The third set of tests use 30-minute 

time frames from training and will train to the point at 10 minutes in the future.   Based 

on the results in Figure 19, this study used adadelta and mean squared error for the rest of 

the tests.  A good explanation of the function of adadelta is given by Ruder (Ruder, 

2016). 

Time span accuracy error 

One hour 89.12% 0.0215 

Forty minutes 89.12% 0.0218 

30 minutes 88.80% 0.0211 

20 minutes 88.87% 0.0217 

 

Figure 20:   Results for predictions using different time spans. 

 

 It is interesting that the different time spans yield the same approximate results, 

but it is remembered that the training set is small (Figure 20).  All of the above training 

was done with two sliding bands of data.  If 7:00 until 8:00 were selected as the first 

band, the second band would be 7:05 until 8:05 with the label data being at 8:10 and 

8:15.  The next test used 3 bands of sliding data from 7:00 until 8:00, 7:05 until 8:05 and 

7:10 until 8:10.  Results of this 3 band test indicate that adding one sliding band is not 
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enough data to make a difference in the algorithm.  Running the algorithm with four 

bands did improve the results (Figure 21). 

Time span accuracy error 

40 minutes 89.19% 0.0211 

30 minutes 89.16% 0.0210 

20 minutes 89.04% 0.0213 

 

Figure 21:   Testing with 4 time bands. 

 

 Since the previous tests were run on small samples, the next test is run with ten 

slides.  A slide is defined as one-time span, for example 30 minutes of training data.  Ten 

slides would concatenate ten time spans together to us as training data with ten labels 

concatenated together to use as label data in the training set.  Pseudo code for this 

routine:    

    X = subset of dataset from start time to start time plus subset size 

    For j in number of slides 

 Beg = start time + j times subset size 

 End = Beg + subset size 
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 Array = subset of dataset from beg until end    

This routine allowed the creation of a larger training set.  For example, 10 slides will train 

on 1,191,950 samples, validate on 26970 samples.  The results of the larger training set 

improved (Figure 22).   

 

Number of 

slides 

Time span accuracy Error Training  

samples 

time 

1 40 minutes 89.12% 0.0218   

10 40 minutes 91.04% 0.0182 1191950 12 m 48 s 

20 40 minutes 91.01% 0.0185 2237710 26m 47s 

20 30 minutes 91.32% 0.0179 2237710 20m 39s 

40 20 minutes 90.79% 0.0188 4629230 35m 49s 

 

Figure 22:   Results of training with larger training sample. 

 

 For the next training, the test data set was changed to the set containing Interstate 

285.  The tests were run starting at 6:00 AM (Figure 23).  The next tests are run 

beginning at 4:00 PM.   
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slides Time span accuracy Error samples time 

10 20 minutes 89.21% 0.0221 1131810 16m 56s 

20 20 minutes 91.03% 0.0185 2217430 27m 4s 

10 30 minutes 90.32% 0.0196 1131810 17m 55s 

 

Figure 23:   Results for using the test data set for Interstate 285 beginning at 6:00 

PM. 

 

 

slides Time 

span 

prediction accuracy error samples time 

10 20 10 minutes 90.33% 0.0196 1131810 13m 33s 

10 30 20 minutes 90.05% 0.0205 1131810 13m 25s 

  

Figure 24:   Results for rush hour period beginning at 4:00 PM. 

 

 The results from the convolutional neural network for the different time periods 

and different test datasets have comparable results (Figure 23 and Figure 24).  Therefore, 

it is concluded that this method of predicting speed levels in the near future have merit 

and should be further investigated. 
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Chapter 5 PRELIMINARY RESULTS AND 
FINDINGS 

 

Sample preliminary results from the analysis were plotted in Figure 25 and Figure 

26.  Figure 25 and  Figure 26 show the clustering of moderate and severe congestion 

segments around the Metro Atlanta area for a statistically computed Monday. It should be 

noted that each camera location shown in the plots may contain more than one individual 

congestion instance. The plot is simply a stacked up series of points indicating congestion 

at various occasions and times. Figure 27 shows the qualitative comparisons of the 

recurrence frequencies for the moderate congestion case.    

In Figure 25, results show that clusters for the moderate congestion 40 mph data 

is more spread out than the 20 mph data based on the distribution of the cameras. The 

clusters also show that cluster 1 occupying the largest area. The cluster is concentrated in 

the downtown Atlanta. The size of the cluster provides clues about potential influence or 

effects of bottlenecks within the cluster. To observe the severity of the congested segment 

and cluster, the frequencies of the congestion during the data sampling period was 

plotted. Figure 27 provides a qualitative visual showing the frequency of congestion 

events at the different locations. In general, recurrent events will have a higher frequency 

than non-recurrent events. Figure 27 does not show how congestion changes in time, but 

it does show which locations are most prone to congestion. While not visible, it should 

also be pointed out that cluster 2, 3 and 4 are at the exact same camera location and 
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therefore was plotted on top of each other. Implicitly, the DBScan algorithm is creating 

clusters based on the three dimensions (x coordinates, y coordinates and time). When 

separate clusters are placed on the same x and y coordinates, this means that the 

congestion was being clustered in the time dimension and may be an indication of a 

recurring event that is time dependent.   

For this case study, severe congestion happens primarily in one cluster within the 

metro Atlanta area where the worst recurrent congestion is near the intersection of 

Interstate 85 with GA 316 and extends to approximately 10 km to the northeast. This 

cluster is shown in Figure 25, and it is the only cluster around the metro Atlanta area 

affected by severe congestion. It should also be pointed out that comparing Figure 25 

with Figure 26 the largest cluster obtained of the moderate congestion does not 

necessarily mean the worst congestion will occur within the cluster. In fact, it was shown 

in Figure 26 that the most severe congestion is nowhere near the downtown Atlanta area.  
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Figure 25:   Cluster number assigned using DBScan for moderate congestion 

(speed<40 mph), for roads within the metro Atlanta area. 
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Figure 26:   Cluster number assigned using DBScan for severe congestion (speed<20 

mph), for roads within the metro Atlanta area. 
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Figure 27:   Plot of Clusters indicating sum of congestion events throughout the 

sampling period. The plotted data is an indicator of temporal severity of congestion 

clusters. 

 

 In the second part of this study, the convolutional neural network algorithm by 

(Charles, 2013) is employed to predict the traffic speeds for a short time frame, that is, 

from five minutes up to an hour.  The network is successfully trained and it is planned 

that the training algorithm will be uploaded to the cloud and used for a method to predict 

normal congestion.
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Chapter 6 CONCLUSION 
 

The research showed the framework for a general spatiotemporal identification of 

traffic congestion model. The preliminary results shown does indicate the ability of the 

algorithm to observe congestion locations as well as the spatial influence of the 

congestion. In addition, statistical temporal data was displayed which shows the severity 

of each recurring congestion location and cluster.  

From the Metro Atlanta case study, congestion can be related spatially by 

observing the distribution of the points based on its geographical location on the plotted 

map. The largest cluster happens to be in downtown Atlanta and its immediate 

surrounding areas; however, this does not necessarily mean that the largest cluster is the 

worst recurring congestion event. For our case study, severe congestion happens 

primarily in one cluster within the metro Atlanta area where the worst recurrent 

congestion is near the intersection of I-85 with GA 316 and extends to approximately 10 

kilometers to the northeast. 

Another point to summarize is that congestion is related temporally at individual 

locations in instances that different cluster numbers are assign to the same cameras. This 

indicates that the same camera is repeatedly flagged for congestion at different times.  
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The possibility of immediate notification of a traffic problem as well as the ability 

to allow travelers to get predicted speeds for the next hour is a big step forward to 

managing a traffic system and planning for a trip. 

The results of the convolutional neural network tests that the possibility exists to 

build a website application that can show predicted speeds for the near future.  Accuracy 

levels of above 90 percent for relatively small samples indicate that much larger samples 

will produce higher accuracy levels. 
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Chapter 7 FUTURE STUDY 
 

This study is currently still ongoing and will move towards real-time 

identification of potential bottlenecks and perhaps evolve to an integrated traffic 

dynamics system for advance planning purposes.  Data is continuing to be collected so 

that the analysis data can be expanded.  It is thought that a larger database up to one 

year’s collection of data will allow further exploration for the prediction and analysis of 

congestion.  There are many ways to fine-tune the convolutional neural network 

programmatically as well as many ways to compare the data.  For example, comparing 

time periods of every day, comparing time periods of a weekend, comparing time periods 

of a weekday, comparing time periods of a weekday.  Results from the algorithms 

ConvLSTM NN (Convolutional Long Short Term Memory neural network) and K-NN 

(nearest neighbor) will be compared with Convolutional Neural Network. 
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Figure 28:   Planned GIS representation of predicted congestion areas in metro 

Atlanta. 

 

 In Figure 28, camera names have been overlaid on the GIS map of Atlanta with 

congestion indicated as red and orange.  This figure is the desired outcome of the future 

study for this project.  It is planned that the map will be refreshed every minute with the 

latest predicted speeds from the convolutional neural network.   

 After the training set is built, an app (a piece of software, a program that can run 

through a web browser in the cloud, on a smart phone, on a computer) will be built to 

process the latest update from the GDOT navigator website, run the processed data with 

the training set and post the results to the ARCGIS site so that anyone can view it.   

 Travelers could access the website and find the predicted speed for the next five 

minutes, ten minutes, up to 30 minutes to determine the route they want to take.  This 
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ability might revolutionize the way commuters plan their travel.  It also might improve 

the traffic flow in the metro area. 
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