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ABSTRACT  
 

Nanostructure metals and metal oxides can be used for surface functionalization and 

combined with different materials to increase functionality. Recently, surface functionality has 

been of interest due to its multi-component and its ability to generate new material properties. One 

of its main application is the creation of nanomaterials because of its novel physical properties 

which contribute towards stabilization, strength, and catalytic properties. Nanomaterials makes it 

possible to fabricate objects in the nanoscale size range which offers beneficial physical properties. 

The nanomaterial distinctiveness allows for the creation of materials with unique characteristics 

for different applications such as photocatalytic coatings. Semiconductor and metal nanoparticles 

in heterogeneous systems have gained wide recognition in recent years because of their 

morphology-dependent electronic properties and their ability to integrate on various materials to 

improve functionality. Metal oxides, such as titanium (IV) oxide (TiO2) and zinc oxide (ZnO) have 

received much attention due to their chemical stability, non-toxicity, low-cost, and high catalytic 

activity. In this report, we design binary and ternary composite materials on cotton fabric (CF) 

namely CF@TiO2-AuNPs, and CF@ZnONRs-TiO2-AuNPs. In these composite materials, the 

nanostructured TiO2 and ZnO nanorods (ZnO-NRs) are deposited on CF by following in-situ 

method. Gold nanoparticles (AuNPs) are incorporated on the TiO2 or ZnO-NRs by in-situ 

synthesis. The nanocomposite materials will be characterized by scanning electron microscopy 

(SEM), energy dispersive X-ray (EDX) line analysis, and X-ray diffraction (XRD). The 

photocatalytic degradation of aqueous Rhodamine B (RhB) will be assessed by UV-visible 

spectroscopy at room temperature under a UV lamp. It was found that the ternary system 

CF@ZnONRs-TiO2-AuNPs exhibit the best photocatalytic performance in comparison to the 

binary system CF@TiO2-AuNPs. 
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CHAPTER 1. INTRODUCTION 

1.1 Surface Functionalization 

Surface functionalization of nanostructured metals and metal oxides can be combined with 

different materials within the same structure, as a way to increase functionality. There has been 

much interest in surface functionality because of its multi-component and its ability to generate 

new material properties. These novel physical properties play a significant role in stabilization, 

strength, catalytic, and high specific chemical reactivity in other materials including biospecies 

and nanomaterials.1 For the applications of biosensor fabrication, surface functionalization of 

nanostructured materials can present numerous functional or organic groups and can enhance 

hydrophilicity to anchor biomolecules through forming specific bonds or electrostatic interactions 

or by grafting or ligands on nanostructured materials.1  

Nanomaterials make it possible to employ materials on an atomic or molecular scale to 

generate objects in the nanoscale size mode (1-100 nm); these materials show interesting quantum 

effects.2 The nanoscale size offers beneficial physical properties for it has an enormous surface 

area, which is extremely reactive in comparison to other more massive forms. The small magnitude 

of the nanomaterials contributes to the formation of familiar mixtures with various materials to 

magnify the properties of the material. The nanomaterial uniqueness allows for the creation of 

materials with distinctive characteristics for multiple applications such as barrier coating, self-

cleaning hydrophobic or photocatalytic coatings, antistatic coatings, and superparamagnetic 

coating.3  

1.2 Photocatalytic Process 

The photocatalytic degradation process has gained much interest in the field of wastewater 

treatment, particularly for wastewater containing toxic aromatic compounds and organic 
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substances. This process involves the acceleration of a photoreaction in the presence of a catalyst, 

which allows for the degradation of obstinate organic pollutants into carbon dioxide and water, by 

utilizing visible and/or ultra-violet (UV) light.4,5 The photocatalytic process offers several 

advantages such as no waste disposal, low cost, complete mineralization, low temperature and 

pressure conditions.4,5  

Photocatalyst focuses on the use of metal oxide semiconductor for the degradation of 

refractory organic substances. For a semiconductor to be photochemically active as a sensitizer in 

a photoreaction the redox potential of the photogenerated valence band hole must be sufficiently 

positive to generated hydroxyl (𝑂𝑂𝐻𝐻∙) radicals; which can subsequently oxidize the organic 

pollutants.4 While the redox potential of the photogenerated conduction band electron must be 

adequately negative to be able to reduce absorbed oxygen gas (O2) to superoxide (O2
.−).4 

Photocatalytic semiconductors such as Si, TiO2, ZnO, WO3, Cds, and ZnS have attracted vast 

scientific significance due to their photocatalytic functions.4 Table 1 list the band gap energies, 

wavelength, valence and conduction band and figure 1 list the band gap positions of said catalysts 

and provides the redox potentials of the H2O/OH2 and O2/H𝑂𝑂2− couples.  
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Figure 1.1. Band gap position of different semiconductors and 𝑂𝑂2/𝐻𝐻𝑂𝑂2∙ and 𝐻𝐻2𝑂𝑂/𝑂𝑂𝐻𝐻∙ couple. 
Adopted from Bhatkhande et al.4  

Table 1.1 List of commonly used semiconductors in the photocatalysis process. Adopted from 
Daghrir et al.6  

Photocatalyst Band gap 
(eV) 

Wavelength 
(nm) 

Valence band 
(V vs NHE) 

Conduction band 
(V vs NHE) 

TiO2 3.2 387 +3.1 -0.1 
ZnO 3.3 387 +3.0 -0.2 
Cds 2.5 496 +2.1 -0.4 

SnO2 3.8 318 +4.1 +0.3 
ZnS 3.7 335 +1.4 -2.3 
WO3 2.8 443 +3.0 +0.4 
CdSe 2.5 729 +1.6 -0.1 

  

 



6 
 

1.3 Titanium Dioxide  

Titanium Dioxide, also known as titanium (IV) oxide or titania, is a renowned and well-

studied semiconductor due to its chemical stability, non-toxicity, low cost, biocompatibility, 

physical, optical, and electrical properties.7 Titania has a strong oxidation and reduction 

capabilities for photoexcitation. Fujishima and Honda first observed this phenomenon in 1972 

when they validated the potential of TiO2 semiconductor material to split water into hydrogen and 

oxygen in a photoelectrochemical cell.8 Since then their research has sparked an interest in advance 

of semiconductor photocatalysis for a wide array of energy and eco-friendly applications.7 With 

the development of visible light active (VLA) TiO2 photocatalytic material being the most 

scientific and monetary advances.8 The systematic photocatalytic process of titania has various 

advantages and applications. However, one of its main area of focus is the decomposition of 

unwanted and refractory organic substances, destruction of pollutants from wastewater and air, the 

killing of harmful bacteria and cancer cells.7 

TiO2 is known to be an n-type semiconductor due to oxygen deficiency which is 

compensated by the presence of Ti+3 centers.8 It exists in three polymorphs: anatase, rutile, and 

brookite (fig. 1.2). All three mineral forms can be synthesized in a laboratory setting; anatase type 

is constructed of the corner (vertices) sharing octahedral which form (001) planes resulting in a 

tetragonal structure (with dipyramidal habit) 7,8 and is used primarily as a photocatalyst under UV 

irradiation.7 In rutile, the octahedral share edges at (001) planes to give a tetragonal crystal 

structure (with prismatic habit).7,8 This form is primarily employed as a white pigment in paint.7,8 

In brookite both edges and corners are shared to give an orthorhombic crystalline structure.8 The 

band gap for anatase is 3.2 eV, 3.0 eV for rutile, and ~3.2 eV for brookite.8 Anatase polymorphs 

is the preferred form due to its high photocatalytic activity because it has a more negative 
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conduction band edge potential and high specific area.7 Titania, thus, has a variety of usage in 

different products such as solar cell, food coloring agent, electrochemical electrodes, and 

capacitors.7 

 

The intrinsic properties of TiO2 lead to limitations that restrict its applications.9 Titania has 

two major limitations, first, the absence of visible-light response, due to its wide band gap (3.2 eV 

for anatase). Wide band gab restricts the photocatalytic activity to the UV-light region and 

diminishes the option to feat full solar radiation to impel photocatalysis.9  Second, the fast 

 

Figure 1.2. The schematic conventional cells for: (a) anatase, (b) rutile, (c) brookite. The 
larger blue spheres represents Ti atoms and the smaller red spheres represents O atoms. 

A

C

B
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recombination rate of photogenerated electron-hole pairs which decrease the overall quantum yield 

of TiO2.9  

1.4 Zinc Oxide  

Numerous heterogeneous photocatalysis has been investigated due to their ability to 

degrade refractory organic substance in an aqueous medium with high proficiency. TiO2 is the 

most common photocatalyst; however, a recent examination has revealed that zinc oxide (ZnO) 

could be a better substitute semiconductor for prospective photocatalyst because of its distinctive 

physical and chemical properties.5,10 Such features include high electrochemical coupling 

coefficient, high catalytic activity, UV filtering properties, and high photostability.11 In 

comparison to TiO2, ZnO has been increasingly compelling because it absorbs exceedingly over 

the UV spectrum and absorbs more light quanta than TiO2.12 Though more effective ZnO has 

photocorrosion at pH lower than 4.12 The materialization of  zinc ion is ascribed to the oxidation 

of  zinc oxide by the valence band.12 

Zinc oxide is an n-type semiconductor that is classified as an II-VI semiconductor whose 

covalence shows firm ionic bonding and light covalent character.13 Its semiconductor group 

characteristic is attributed to zinc (Zn) and oxygen (O) being in separate groups on the periodic 

table.13 ZnO offers excellent piezoelectric, electric conductivity, chemical sensing, optical, and 

semiconductor properties.13 ZnO has a wide band gap of 3.3 eV in the near-UV spectrum, bulky 

exciton binding energy of 60 meV, an electron affinity of 4.2 eV, and high thermal and 

mechanical stability at ambient temperature making it a favorable material for a variety of 

applications in diverse fields.11,13 The electrical conductivity and optical absorption of ZnO is 

affected due to its wide band gap, when the catalyst is dope with other metals there is an increase 

in its conductivity and the excitonic emission can increase at room temperature.13 ZnO holds 
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higher optical absorption in the UVA (315-400 nm) and UVB (280-315 nm) regions which are 

favorable in photoreactions.13  

Nano-ZnO has been synthesized in various growth morphologies such as nanoneedles, 

nanosphere, nanotubes, nanowires, and nanorods each with specific structural, optical, electrical, 

and physicochemical properties.13 Zinc oxide exists in three polymorphs: wurtzite (fig. 1.3A), 

zinc-blende (fig. 1.3B), and sometimes rock-salt. Wurtzite ZnO, most stable, has a hexagonal 

structure with lattices spacing a = 0.325 nm and c = 0.521 nm, the fraction 𝑐𝑐/𝑎𝑎~1.6 is 

considered close to the model value for hexagonal cell 𝑐𝑐𝑐𝑐 𝑎𝑎 = 1.633. 13,14 The structure is 

presented as an integer of interchanging planes made of tetrahedrally coordinated oxygen and 

zinc ions, arranged to interchange along the 𝑐𝑐-axis.13,14 The tetrahedral organization creates a 

non-central symmetric structure and thus piezoelectricity and pyroelectricity. 13,14 Wurtzite ZnO 

as a polar surface with a basal plane. Zinc-blende ZnO has a face-centered cubic structure and 

has no inversion symmetry. 13,14 

 

Figure 1.3. The schematic conventional cells for: (a) Wurtzite, (b) zinc-blende. The larger gray 
spheres represents Zn atoms and the smaller yellow spheres represents O atoms. 
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1.5 Nanocomposite  

Semiconductor and metal nanoparticles in heterogeneous systems have gained full 

recognition in recent years because of their morphology dependent electronic properties and their 

ability to integrate on various materials to improve functionality. 15,16 This fabricated system is of 

an advantage because it appreciably enhances the capping of the semiconductor or metal 

nanocluster with another layer of compatible material, which leads to better stability of the 

nanoparticles.15 With this advantage, composite nanoclusters provide several applications such as 

xerography, photography, chemical synthesis, and conversion and storage of solar light energy.16 

There has been much development in this field, which has led to the design of different core/shell 

type nanomaterials, for instance, metal/metal, metal/semiconductor, metal/metal oxide, 

semiconductor/semiconductor, and semiconductor/metal systems.15 

The main aim of designing and improving the composite material is their capability to 

enhance the catalytic properties or to adjust the luminescent or sensing properties.15 Kamat et al. 

cited that single integral semiconductor demonstrates moderately poor photocatalytic efficiency 

(<5%) for most of the photogenerated charge carriers undergo recombination.16 For example, 

reactive surfaces, such as titania are capable of undergoing charge-transfer interaction with specific 

functional groups of the adsorbed molecule because of their hydroxylated surfaces.16 This 

phenomenon can be a probe with electronic absorption and emission as the energetics of the ground 

and excited states are modified.16 However, a semiconductor/metal composite material aids charge 

correction in the system.15 If a semiconductor is decorated with noble metal (e.g., gold or silver) it 

will increase the efficiency of the photocatalytic reactions.15 The noble metal has a high electron 

storage capacity within its particle; therefore, it functions as a sink for photoinduced charge 

carriers, supporting interfacial charge-transfer process.15 Composite materials have been proven 



11 
 

to improve the photoconversion efficiency of dye-sensitized photoreaction and photochemical 

solar cells.15  

Dawson et al. reported that though much effort has been made to fabricate 

semiconductor/metal composite nanoparticles, there is still limited knowledge available about the 

photodynamic of the materials.15  

1.6 Photocatalytic Activity of Semiconductor 

The photocatalytic activity of a semiconductor is induced by light excitation. The light 

energy must be equal or higher than the band gap energy of the semiconductor, which leads to the 

formation of electron-hole pair.3,8 Since titania is only active in the UV region, UV light (λ≤387 

nm) is necessary.8 While ZnO holds higher optical absorption in the UVA (315-400 nm) and UVB 

(280-315 nm) regions.13 The photoinduced reaction is activated by the absorption of a photon that 

excites an electron to the conduction band (𝑒𝑒−𝐶𝐶𝐶𝐶) forming a positive hole in the valence band 

(ℎ+𝑣𝑣𝑣𝑣) of the semiconductor catalyst.7,8 For titania the absorption leads to charge separation where 

the charge carries can be confined as Ti3+ and 𝑂𝑂− defected site with the titania lattices or 

 

Figure 1.4. Illustration of a core/shell semiconductor/metal nanomaterial. Adopted from 
Abdulla-Al-Mamun et al.16 
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recombined.8 A redox reaction with the adsorbates can occur if the charge carriers transfer to the 

catalyst surface.7,8 

The catalyst can interact with light of sufficient energy to produce reactive oxidizing 

species that can lead to the photocatalytic transformation of a pollutant.7,8 During the photoinduced 

reaction two processes can transpire concurrently, first involves the oxidation of dissociatively 

absorbed water by photogenerated holes and second involves the reduction of an electron acceptor 

by photoexcited electrons. These reactions lead to the production of a ·OH and 𝑂𝑂2∙− radical anion.8 

The ·OH is vastly robust oxidants.8 They can successively oxidize organic species with 

mineralization producing minerals salts, CO2, and H2O.8 While the 𝑂𝑂2∙− can contribute to the 

oxidative pathway, for instance the degradation of a pollutant.8   

 

 

Figure 1.5. Illustration of a photocatalytic reaction mechanisms for: A) binary system and B) 
ternary system. 
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1.7 Thesis Aim 

The objective of this thesis work is to design a semiconductor/metal nanoparticle system 

capable of enhancing catalytic and sensing properties and assessing their ability to degrade 

Rhodamine B (RhB)  as an organic pollutant in water. TiO2 and ZnO will be used as a 

semiconductor component. However, since single integral semiconductor exhibits weak 

photocatalytic efficiency gold nanoparticles (AuNPs) will be incorporated into the system to 

increase the efficiency of the photoreaction.16 We create binary and ternary composite material on 

functionalized cotton fabric (CF) namely CF@TiO2-AuNPs, and CF@ZnONRs-TiO2-AuNPs. The 

use of a functionalizes textile makes a more innovative system because it eliminates the need to 

centrifuge, filter, and better recovery after degradation. Besides, the CF-based composites are 

excellent for recyclability. CF@TiO2-AuNPs and CF@ZnONRs-TiO2-AuNPs are expected to 

have no charge-transfer interaction and enhanced photocatalytic activity over CF@TiO2 and 

CF@ZnONRs-TiO2 due to the addition of the noble metal. This thesis will be structured as follows: 

Chapter one will discuss the literature review on heterogeneous photocatalysis, nanocomposite and 

their photocatalytic activity. Chapter two will detail the principles of characterization techniques. 

Chapter three will detail the binary system. Chapter four will describe the ternary system, gold ion 

leaching, and radical trapping17,18 experiment of the most active composite.  
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CHAPER 2. INSTRUMENTATIONS 

2.1 Principles of X-ray Diffraction  

In 1912, Max von Laue and colleague discovered X-ray diffraction (XRD) by crystals, they 

proved that crystalline substances act as a three-dimensional diffraction grating for X-ray 

wavelengths of equivalent magnitude to the spacing of planes in a crystal lattices.19-21 Following 

this discovery, William Henry Bragg and his son William Lawrence Bragg developed an 

alternative technique, Bragg’s law, to which contributed to the confirmation of Laue findings.19-21  

X-ray diffraction is a non-destructive analytical method used to establish evidence on the 

internal lattice of crystalline substances such as unit cell dimensions, bond-lengths, bond-angles, 

and crystal defects.19-21 The technique uses X-ray analysis to generate a crystal structure by using 

the diffraction data provided from the interaction between a crystalline structure and a beam of 

incidents rays.19-21 Upon diffraction light is scattered by a periodic array with long-range order, 

generating constructive interference at specific directions.19-21 However, for this to occur Bragg’s 

Law must be satisfied: 2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑛𝑛λ, where d is the inter-planar spacing associated with the 

diffraction, 𝜃𝜃 if the diffraction angle, n is a positive integer, and λ is the wavelength of the incident 

wave.19-21 Based on the specific directions a reflection occurs which is due to the presence of spots 

on the diffraction pattern.19-21  

As a result, X-ray diffraction occurs from the electromagnetic radiation affecting the 

regular array of scatters.19-21 Electromagnetic waves are utilized to create the diffraction pattern 

for their wavelength is considered the same order of magnitude as their lattice spacing between 

planes in a crystalline sample, Bragg’s law is used to relate this concept.19-21 Because of this 

concept diffracted X-rays can be detected, processed, and counted.19-21 All probable diffraction 

direction of the crystal lattice can be obtained by scanning the sample through a range of 2𝜃𝜃 angles 
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due to the random orientation of the sample material.19-21 The d-spacing generated is compared to 

a set of standard reference patterns.19-21 A compound can be identified based on the conversion of 

the diffraction peaks to d-spacing because each compound has a distinctive set of d-spacing.19-21  

2.2 Principles of Scanning Electron Microscopy and Energy Dispersive X-ray Analysis  

Scanning electron microscopy (SEM) is a rapid and non-destructive analytical technique 

used for nanoscale surface analysis.20-22 The technique delivers high-resolution images of a 

specimen surface topography by scanning the surface with a highly focused beam of electron.23-

25 Those electrons will interact with the molecules in the specimen, fabricating numerous signals 

that produce data about the composition and surface topography of the specimen.23-25 The electron 

beam scans the sample in a parallel rectangular form, then use the beam locus and detected signals 

to generate a high-resolution image.23-25 The SEM can also be paired with an energy dispersive 

X-ray (EDX) spectroscopy system, this portion of the system is used for the determination of 

elemental identification and composition of a sample at the nanoscale, and map their 

dissemination.23-25 The technique is based on characteristic radiation, which occurs when outer-

shell electrons are discharged to fill the opening in the inner shell of an atom, freeing radiations 

 

Figure 2.1. Schematics of an angled (2𝜃𝜃𝑥𝑥axis) X-ray diffractometer pattern using Bragg’s law. 
Adopted from Inaba et al.22 
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in a pattern that is unique to each element.23-25 This form of X-ray is emitted during the analysis 

when the electron beam detaches an inner shell electron from the specimen.23-25 An electron with 

a higher-energy from the outer shell then packs the electron-hole in the inner shell with 

electrons.23-25 The instrument then measures the number of quanta and energy of the radiation. 

EDX is then able to measure the elemental composition using the energies of the X-rays because 

of its uniqueness to each emitting element.23-25 

2.3 Principles of UV-Visible Spectroscopy  

Ultraviolet-visible spectroscopy (UV-vis) is a well-known analytical technique used for 

chemical identification and qualitative analysis, one of its main applications is the quantitative 

determination of various organic and inorganic substances in an aqueous medium.26-29 The 

technique operates in the ultraviolet-visible gamut, meaning it uses light in the visible and 

 

Scheme 2.1. Illustration of EDX X-ray generation process for analysis. 
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adjoining scope.26-29 UV-vis correlates the interaction of light with matter, leading to absorption 

or reflectance in the visible region of the electromagnetic spectrum where atoms and molecules 

undergo electronic transitions.26-29 This may transpire for the absorbed ultraviolet radiation energy 

is equal to the energy difference for the electronic transition states.26-29 When there is an absorption 

of light in the ultraviolet or visible region by a chemical substance a unique spectrum will be 

generated.26-29 

Molecules can absorb the energy in the form of ultraviolet or visible light with bonding 

and non-bonding electrons excite the electrons to a higher anti-bonding molecular orbital.26-29 

However, if a molecule contains a readily excited electron it can absorb a longer wavelength of 

light.26-29 There are four types of transition; п − п∗,𝑛𝑛 − п∗,𝜎𝜎 − 𝜎𝜎∗, and  𝑛𝑛 − 𝜎𝜎∗.26-29 The UV 

spectrophotometer uses Beers-Lambert law: 𝐴𝐴 = log � 𝐼𝐼0
𝐼𝐼

 � = ƐƖc, where is the A for the 

absorbance of a sample at a specific wavelength: 𝐼𝐼0 and 𝐼𝐼 is the intensity of the monochromic  light 

entering the sample and the intensity of the light emerging from the sample.26-29 The sample 

absorbance is directly related to the concentration of the absorbing substance and the pathlength 

of the sample according to the law: Ɛ is the molar extinction coefficient (M-1cm-1), c is the 

concentration (M) of the solute, and Ɩ is the pathlength (cm).26-29  
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Figure 2.3. Schematic of UV-Visible spectrophotometer.30  

 

Figure 2.2. Diagram of possible electronic transitions of п, n, and σ electrons.  
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CHAPTER 3. BINARY SYSTEM 
3.1 Binary Composite 

The overuse of organic dyes for domestic purpose and industrial activities has led to severe 

environmental concerns. The over usage has led to water contamination because most dyes and 

their metabolites are toxic and carcinogenic and thereby endanger public health as well as imposing 

harmful consequences upon the ecosystem.31 In the past decade, the scientific community has 

made great efforts to develop energy efficient photocatalysts to treat industrial wastewater 

containing toxic aromatic compounds and organic dyes.31 Photocatalysis focuses on the use of 

metal oxide semiconductors for degradation of organic pollutants.31 Semiconductors 

photocatalysis such as TiO2 has attracted much interest due to its high stability, low cost, and non-

toxicity. The semiconductor would be employed in a photocatalytic degradation process as a way 

to degrade organic pollutants under near UV irradiation. However, there are several limitations to 

this process. First, titania has a wide band gap making it only active under UV irradiation thereby 

restricting its catalytic efficiency under visible light.32 Second, it undergoes electron-hole 

recombination in the absence of acceptable electron and hole scavengers leading to significant loss 

of stored energy which results in limited quantum yield for photoreactions.32 To rectify these 

limitations binary systems have been created using different core/shell type nanomaterials, for 

example, metal/metal and semiconductor/metal. A binary system using metal oxides supported 

noble-metal nanoparticles has been used to regulate the electronic band gap structure of titania 

thereby broadening the photosensitive response to the visible light region.32,33 

Lu et al. reported that gold (Au) and silver (Ag) noble-metal nanoparticles (NPs) can lead 

to visible light activation because of their localized surface plasmon resonance (LSPR). LSPR is 

caused by the oscillations of the surface electrons existing on the localized surface of the noble-

metals NPs.34 This phenomenon causes the red light to be intensely absorbed and dispersed, 
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making Au or Ag act as an antenna to harvest light leading to the extension of the light absorption 

gamut of the semiconductor wide band gap.35 Julkapli et al. reported that TiO2 supported AuNPs 

has given promising results because the AuNPs have high electron storage capacity and functions 

as a sink for the photoinduced charge carriers while promoting interfacial charge transfer process.35 

There is a decrease in the energy band gap of TiO2 in the presence of AuNPs in comparison to the 

typical band gap energies of anatase and rutile TiO2 (3.2 eV and 3.0 eV), this promotes robust 

interaction between AuNPs and TiO2 while increasing the charge separation between the excited 

𝑒𝑒−𝐶𝐶𝐶𝐶 and ℎ+𝑣𝑣𝑣𝑣 enhancing the photocatalytic activity of the metal oxide.33 The different Fermi 

levels of the semiconductor and noble metal NPS can be credited for the enhanced photocatalytic 

activity.33 The Fermi level energy of the conduction band edge of titania is higher than AuNPs. 

Therefore, the photo-stimulated electrons can be trapped by AuNPs whereas the photo-formed 

holes stay in TiO2 valence band.33 

For this project, we fabricate CF@TiO2 and CF@TiO2-AuNPs nanocomposite for the 

degradation of RhB, to evaluate the efficiency of the nanocomposite when it is decorated with 

AuNPs. We hypothesized that CF@TiO2-AuNPs nanocomposite is a better system for the 

degradation of dye pollutants for there should be no electron-hole recombination and enhanced 

photocatalytic activity in comparison to CF@TiO2 due to the addition of the noble-metal NPs.  

 

 

 

 

 

 

 



21 
 

 

3.2 MATERIALS AND METHODS 

A. Materials  

100% Cotton fabric used as a substrate, was purchased from a local Walmart. Sodium 

hydroxide beads, methanol, and Triton X-100 (Polyethylene glycol tert-octylphenyl) were 

purchased from VWR analytical (BDH chemicals). Titanium (IV) n-butoxide (Ti[O(CH2)3]4, 

99+%) was purchased from Alfa Aesar. Ethanol Anhydrous 200 proof was purchase from Decon 

laboratories, Inc. Citric acid, anhydrous, powder and hydrochloric acid (36.5-38.0%) were 

purchased from J.T.Baker. Sodium borohydride (≥99%) was purchased from Fluka Analytical. 

 

Scheme 3.1. Graphic of TiO2 and AuNPs interfacial charge transfer process. 
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Sodium tetrachloroaurate (III) dihydrate (≥99%) and Rhodamine B (RhB) were purchased from 

Sigma-Aldrich. All chemicals and solvents were used as received. 

B. Synthesis of TiO2-nanosols 

Titania nanosols was synthesized following a literature procedure.36 In a 100 mL 

Erlenmeyer flask, 15.0 mL of absolute ethanol was added dropwise to 45.0 mL of Titanium (IV) 

n-butoxide with constant stir. The pH of the mixture was then adjusted to pH 2 using 37% 

hydrochloric acid (HCl), then stirred for forty-five minutes. The solution obtained was yellow 

(transparent) and homogeneous.  

C. Pretreatment and Fabrication of CF@TiO2 Substrate 

One hundred percent white cotton fabric (CF) was cut into twelve square inches and 

pretreated for the fabrication process. Samples were pretreat using a non-ionic cleaning solution 

to depurate the fabric of any organic or inorganic compounds, grease, wax, and stains from its 

surface. To obtain the non-ionic cleaning solution, 5.000 g of sodium hydroxide (NaOH), 1.700 g 

of Triton X-100, and 0.758 g of citric acid was dissolved in 500.0 mL of DI water in a 1000 mL 

beaker. The solution was heated to 100.1℃, then one to five squares of the fabric was submerged 

into the solution for one hour. After the hour, samples were removed and rinsed with DI water 

serval times and dried at 42.1℃ overnight. Treated CF (fig. 3.2A) was used during all fabricating 

process.  

5.0 mL of TiO2-nanosol was drop cast on each treated twelve square inches CF and dried 

at 72.1℃ for three minutes, then cured at 42.1℃ for twenty minutes to evaporate the ethanol 

solvent. Samples were then subjected to hydrothermal treatment by boiling on a hot plate for one 

hour at 80.1℃ in a 100 mL Erlenmeyer flask. Samples were then dried at 42.1℃ overnight. The 

fabricated CF@TiO2 substrate was sonicated for thirty minutes to remove any unbounded TiO2 
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particles, then dried at 42.1℃ for one hour. The fabricated CF@TiO2 substrate (fig. 3.2B) was 

stored in a weigh boat at room temperature. 

 

 

 

  

 

          Figure 3.1. Process for the fabrication of CF@TiO2 substrate.  

 

Figure 3.2. Digital photograph of A) pretreated cotton fabric and B) fabricated CF@TiO2 
substrate.  
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D. In-situ Deposition of Gold Nanoparticles  

The fabricated CF@TiO2 substrate was cut in to 2 × 1 1
2
 inches, then placed into a 50 mL 

beaker (used one at a time). CF@TiO2-AuNPs composite material was prepared by adding 5.0 mL 

of 25 mM sodium tetrachloroaurate (III) dihydrate (NaAuCl4) solution to the beaker and stand for 

five minutes to allow complete absorption of [AuCl4]− ions on to the surface of the TiO2. The 

negatively charged [AuCl4]− adsorbs strongly on the positively charged surface of the TiO2 

nanoparticles. The NaAuCl4 solution was discarded and the samples were rinsed several times with 

ethanol and DI water. The reduction of the [AuCl4]− ions was attained by the addition of 3.0 mL 

of 100 mM sodium borohydride (NaBH4), a dark wine red color change was observed immediately 

on the fabric indicating the formation of AuNPs on the substrate. The NaBH4 solution was 

discarded and the samples were rinsed several times with ethanol and DI water. CF@TiO2-AuNPs 

composite material was dried at 42.1℃ overnight and then stored in a weigh boat at room 

temperature. Scheme 3.2 illustrates the decoration of the TiO2 semiconductor with AuNPs. 

 

 

 

  

Scheme 3.2. Illustration of AuNPs on the surface of TiO2.  



25 
 

 

E. Characterization   

XRD patterns of samples were collected using a Rigaku miniflex XRD system equipped 

with a D/Tex Ultra detector with a Cu target X-ray tube and a diffracted beam monochromator 

limiting the beam to Cu Kα radiation at 𝜆𝜆 = 1.5406 Å. The generator was set for 40 kV and 15 

mA. Data was collected between 2𝜃𝜃 = 5.0° and 90.0° at 5.0° per minute. SEM–EDX was 

carried out on TESCAN VEGA3 SEM operating between 5.0 - 30.0 kV to which a ThermoFisher 

scientific UltraDry detector EDX system had been interfaced. All composite materials were cut 

into 0.5 cm and placed on an aluminum stub with carbon tape, then inserted into the SEM stage 

for analysis. Dye degradation in the presences of the photocatalyst was monitored using a Cary 

4000 UV-visible spectrophotometer in the wavelength range from 280-700 nm, with a resolution 

of <0.05 nm. 

 
 Figure 3.3. Digital photograph of CF@TiO2-AuNPs composite material. 
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F. Photocatalytic Study 

The photocatalytic degradation of aqueous RhB was carried out in a homemade 21 × 17 

inches photocatalytic chamber equipped with a Black-Ray ® XX-15BLB UV Bench Lamp (365 

nm) and Reliable shaker (Model 55 Rocking shaker) to assess the photocatalytic activity of the 

binary system, CF@TiO2-AuNPs. The study was done to monitor the change in RhB concentration 

versus the time of irradiation.  

For the assessment, each composite material was cut into 1
2

× 1 1
2
 inches and affix to the 

side of a 4.5 mL polymethylmethacrylate (PMMA) cuvette, then 3.0 mL of 8 µM RhB was added. 

The cuvette was then sealed with a cap and parafilm to prevent leakage. A UV-Visible spectrum 

was collected at zero minutes for RhB and each composite material. Before irradiation, samples 

were sealed in a box on the shaker for thirty minutes to reach adsorption-desorption equilibrium. 

After thirty minutes dark, a UV-Visible spectrum was collected for each sample. For the UV 

irradiation study, samples were placed on the shaker three inches from the UV lamp. Once the 

chamber was sealed the light was turned on. A UV-Visible absorption spectrum for each sample 

was collected every ten minutes to monitor the decrease in RhB absorption maxima. When not in 

the chamber samples were kept in the dark box to limit visible light interaction. 

 

  

 

 

 

 

 

 
 

Figure 3.4. Molecular structure of Rhoadmine B (RhB). 
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3.3  RESULTS AND DISCUSSION  

For this project cotton fabric was coated with TiO2 to generate a CF@TiO2 substrate, then 

subsequently decorated with AuNPs to create a binary composite CF@TiO2-AuNPs that has 

enhanced photocatalytic properties. The aim was to develop a simple, rapid, and reproducible 

binary system. Titanium (IV) n-butoxide was used as an inexpensive TiO2 precursor with ethanol 

as a water-free reaction medium to fabricate TiO2 thin layer on cotton fabric, a sol-gel method was 

used. Synthesis parameters such as deposition time, heating, cooling, and precursors volume to 

molar ratios were all important factors for the successful fabrication of a substrate. If the conditions 

of the synthetic method have not been fine-tuned the morphology of the resultant TiO2 layer will 

show surface defects. Several different titania sol-gel methods were attempted to functionalize the 

surface of the fiber, however, this method yields the best results. 

A. XRD Analysis 

The XRD technique was used to determine the crystalline phase of the various composite 

materials, Figure 3.5 displays the XRD pattern for the unmodified CF, CF@AuNPs, and 

CF@TiO2. The characteristic diffraction peaks observed at 2𝜃𝜃= 14.4°, 16.2°, 22.6°, and 34.4° are 

distinctive peaks for cellulose I crystalline phase ((110), (110), (200) and (004)).37 In CF@AuNPs 

nanocomposite a new peak appears at 2𝜃𝜃=37.8° which represents the crystalline phase for AuNPs 

(1 1 1) plane. The presence of a single plane is related to the amount of AuNPs deposited on the 

surface of the CF. A study published by Das et al., showed that the presences of a single plane 

 ( 1 1 1) on the crystalline lattice of gold means there was approximately 2% of AuNPs loaded on 

a substrate.38 Additional, characteristic diffraction peaks at 2𝜃𝜃=25.3°, 34.56°, 47.8°, and 54.5° are 

attributed to anatase TiO2 which has (1 0 1), (0 0 4), (2 0 0), and (2 1 1) planes. The binary 
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composite showed an overlap broad distribution of the AuNPs (1 1 1) plane and the (0 0 4) plane 

of the anatase TiO2 crystallite. The characterization data provided by the XRD confirmed  

the fabrication of the composite materials used in the binary system. 

 

B. SEM Images 

The SEM images show the morphology of the TiO2 thin layer used in the binary composite. 

Figure 3.6A illustrates the SEM image for unmodified CF. The SEM image of the surface showed 

that the fibers of the substrate are rather smooth. Next, figure 3.6B shows the surface topography 

of CF@TiO2 nanocomposite, TiO2 is attached by OH bonds to the surface of the fabric forming a 

thin film layer. Substantial cracks can be spotted on the surface of the thin film which is initiated 

 

Figure 3.5. XRD patterns of the binary system samples: unmodified CF, CF@AuNPs, CF@TiO2, 
and CF@TiO2-AuNPs. The black diamond shape represents the diffraction pattern for CF, the 
red circle shape represents the diffraction pattern for AuNPs, and the blue triangle shape 
represents the diffraction pattern for TiO2. XRD patterns for samples were collected using a 
Rigaku miniflex XRD system. Data was collected between 2θ=5.0° and 90.0° at 5.0° per minute. 
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by synthesis conditions not being fine-tuned and possible surface tension which occurs during the 

curing process. The surface tensions could cause the thicker film, leading to a reduction of the 

bond strength between the semiconductor NPs.35 Additionally, there could be a discrepancy of 

thermal expansion coefficient between the CF substrate and TiO2 thin film.39 Finally, figure 3.6C 

shows the morphology of CF@TiO2-AuNPs nanocomposite, however, the in-house SEM could 

not be magnified into the nanometer ranger to get a closer visual of the NPs.  

C. EDX Line Analysis 

SEM-EDX analysis was performed on the samples, and the technique was used to confirm 

and identify the elemental composition of the composite materials. Table 3.1 shows the EDX data 

for unmodified CF, CF@TiO2, and CF@TiO2-AuNPs nanocomposite. The unmodified CF showed 

peaks for carbon (C) and oxygen (O) with a weight percent of (33.73 C and 66.27 O) and atom 

percent of (40.41 C and 59.59 O). Appendix A.1 shows the reported EDX spectrum for cellulose 

fabric.40 CF@TiO2 nanocomposite showed three additional peaks (Appendix A.2), with the 

strongest at 0.6 keV whose weight percent was 40.90 and atom percent was 17.72. CF@TiO2-

AuNPs nanocomposite  showed a weak peaks (Appendix A.3) for Au at 2 keV.40 This is the 

reported peak for coating of gold on fabrics for SEM imaging.40 The characterization images 

 

Figure 3.6. SEM images of the binary system samples: A) unmodified CF, B) CF@TiO2, and C) 
CF@TiO2-AuNPs. SEM was carried out on TESCAN VEGA3 SEM operating between 5.0 - 
30.0 kV 
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provided by the SEM-EDX analysis confirmed the fabrication of the composite materials used in 

the binary system. EDX graphs are shown in appendix A. 

Table 3.1. EDX line analysis data for binary composite. EDX graphs are shown in appendix A 

Materials Elements Weight % Atom % 

CF 

C K 
O K 

33.73 
66.27 
100 

40.41 
59.59 
100 

 

CF@TiO2 

C K 
O K 
Ti K 
Ti L 

13.01 
44.09 

-- 
40.90 
100 

22.48 
59.79 

-- 
17.72 
100 

CF@TiO2-AuNPs 

C K 
O K 
Ti K 
Ti L 

Au M 

12.01 
42.55 

-- 
37.74 
7.70 
100 

22.29 
59.27 

-- 
17.56 
0.87 
100 

 

D. Photocatalytic Activity 

The photocatalytic activity of CF@TiO2-AuNPs was tested by assessing the photocatalytic 

degradation of aqueous RhB under UV irradiation. 8µM RhB (no composite), unmodified CF, and 

CF@TiO2 were used as controls to compare the efficiency of the binary system. A system has 

active photocatalytic properties if there is a decrease in the concentration of aqueous RhB with the 

time of irradiation. 

Figure 3.7A illustrations the UV-Visible absorption spectrum for 8µM RhB, the 

illumination in the presence of 8µM RhB (no composite) showed no changes in the adsorption 

spectrum indicating the absence of active photocatalytic properties without a composite material. 

The UV-Vis absorption spectrum for unmodified CF (Fig. 3.7B) showed a slight change after 

adsorption-desorption equilibrium (thirty minutes dark). However, illumination in the presence of 
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unmodified CF did not show the decrease in RhB absorption maxima indicating the absence of 

active photocatalytic properties. The absorption spectrum for CF@TiO2 (Fig. 3.7C) is the first 

system that showed active photocatalytic properties. After adsorption-desorption equilibrium, 

there was a 28% decrease in RhB concentration, however, there was no change in the color of the 

solution. The illumination of CF@TiO2 leads to an 87% decrease in the concentration of RhB 

within ninety minutes of UV irradiation along with changes to the color of the solution.  

As noted in Figure 3.7C the spectrum show a hypsochromic shift (blue shift) of the RhB 

absorption band which could be correlated to the formation of a sequence of step-wise N-de-

ethylated intermediates.41 This changes the rate of photodegradation of the dye and mechanistic 

pathway.41 For xanthene dyes such as RhB have N-alkylamine groups which may degrade through 

two pathways, first, the N-de-alkylation of the chromophore skeleton or second, the cleavage of 

the whole conjugated chromophore structure.42 Therefore, observing a blue shift indicates the 

formation of the N-de-ethylated intermediate which is caused by the destruction of the conjugated 

chromophore structure.42 Meaning that the backbone of the RhB structure was destroyed.41 The 

photoreactivity could also be hindered due to mineralization rate or type of photocatalyst used.43 

The photoreaction is prevented because a charge transfer is occurring between the excited RhB 

molecule and TiO2 thin film. Therefore, surface interaction between the dye and semiconductor is 

restricted and the electrons cannot be injected from the excited RhB states into the conduction 

band of the TiO2.43 

 The absorption spectrum for CF@TiO2-AuNPs (Fig. 3.7D) is the second system that 

showed active photocatalytic properties. After adsorption-desorption equilibrium, there was a 39% 

decrease in RhB concentration. However, there was no change in the color of the solution. The 

illumination of CF@TiO2-AuNPs leads to a 94% decrease in the concentration of RhB within 
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ninety minutes of UV irradiation along with changes to the color of the solution. The observed 

changes indicated that light irradiation of CF@TiO2-AuNPs composite in a photoreaction could 

lead to the degradation of aqueous RhB. From the study, we can infer that AuNPs is strongly 

related to the efficiency of the photocatalytic activity because it has high electron storage capacity 

and functions as a sink for the photoinduced charge carriers while promoting interfacial charge 

transfer process.31 Promoting robust interaction between Au and TiO2 which increase the charge 

separation between the excited 𝑒𝑒−𝐶𝐶𝐶𝐶 and ℎ+𝑣𝑣𝑣𝑣 enhancing the photocatalytic activity.33 

 

Figure 3.7. UV-Visible adsorption spectra of the photocatalytic degradation of  3.0 mL 8 μM RhB 
under a UV light (365nm) in the presence of composite materials: (a) 8 μM  RhB (b) Cotton Fabric 
as a control, (c) CF@TiO2  also as a control, (d) CF@TiO2-AuNPs. 
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3.4 CONCLUSION  
 

In this work, we fabricate CF@TiO2 and CF@TiO2-AuNPs nanocomposites. TiO2 is first 

embedded in the cotton fabric following the solvothermal method. AuNPs were synthesized 

following in-situ method in the presence of CF@TiO2 and thereby creating CF@TiO2-AuNPs. 

XRD and SEM/EDX techniques characterized both the composites. We assessed these composite 

materials in degrading photocatalytic degradation of a RhB dye under UV irradiation. CF@TiO2-

AuNPs demonstrated significantly enhanced activity compared to CF@TiO2. 
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CHAPTER 4. TERNARY SYSTEM  

4.1 Ternary Composite 

During the last few decades, TiO2 and ZnO have received much attention for their 

applications as a semiconductors photocatalysis in wastewater treatment. Both are well studied 

semiconductors due to their low cost, quantum confinement,44 non-toxicity, increase surface 

area,44 chemical stability, and high photocatalytic activity. Both can yield photoinduced electron-

hole pairs under UV irradiation which leads to an array of chemical redox reactions,45 thus having 

the capability to decomposed and/or mineralized refractory organic or inorganic pollutants. ZnO 

and TiO2 both have a wide band gap, therefore, restricting their photoinduced application to only 

under UV light. TiO2 experience poor quantum yield because of its fast recombination of the 

photogenerated electron-hole pair and ZnO may experience imbalance chemical stoichiometry if 

not synthesized correctly causing degradation and chemical instability.44 ZnO can also undergo 

photocorrosion at pH lower than 4.12 

 Thus, for them to make favorable photocatalysis they must have proper band alignment, 

morphology, and limited surface defects.45 Therefore, to create better photocatalysis and improve 

their photoreactivity they can be used to develop heterogeneous structures for a binary system, as 

discussed in chapter 3, and ternary systems. In comparison to different core/shell nanomaterials 

binary composite ZnO-TiO2 has been the most studied due to their limited difference in band gap 

energies, 3.2 eV for anatase TiO2 and 3.3 eV for ZnO wurtzite. When combined there is a reduction 

in charge transfer rates and increase in photon conversion efficiencies which is attributed to the 

valence band of ZnO being located above the valence band and conduction band of TiO2 which 

causes the photoinduced electron-hole pairs to separate within the system.46 However, the electron-

hole pair has a short lifespan, so the addition of a noble-metal NPs creates a more efficient system 
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and further improve photocatalytic activity.46 When the noble-metal NPs (e.g. Au) is added to the 

interfaces of ZnO-TiO2 heterojunction it induces beneficial electrical and optical properties that 

improve the energy harvesting of the binary composite.44  

In comparison to the binary composite ZnO-TiO2, the ternary composite ZnO-TiO2-AuNPs 

should be superior due to the enhancement provided by the effects of the LSPR caused by visible 

light activation.45 Along with the formation of the Schottky barrier at the TiO2-AuNPs interface, 

with this barrier, the electrons are permanently transferred to the surface of Au and the holes are 

transmitted to the ZnO surface.46 This phenomenon contributes to higher charge separation 

between the excited 𝑒𝑒−𝐶𝐶𝐶𝐶 and ℎ+𝑣𝑣𝑣𝑣 enhancing the photocatalytic activity of the metal oxide.33 

When a metal interacts with a semiconductor a Schottky barrier occurs, the barrier is contributed 

to the electrons formed at the metal-semiconductor interface.45  

The ternary system has three mechanistic pathways which leads to favorable charge 

separation: (i) electrons being transferred from the conductance band of the TiO2 to the Au due to 

the high Schottky barrier at the TiO2-AuNPs interface causing a decrease in the recombination of 

the photogenerated electron-hole pair,45,46 (ii) electrons being transferred from the conductance 

band of the ZnO to the Au due to the Schottky barrier at the ZnO-AuNPs interface,45,46 (iii) small 

difference in wide band gaps promotes electron transfer from the conductance band of ZnO to 

conductance band of TiO2 and holes in the valence band of TiO2 could be trapped by the valence 

band of ZnO.45,46  

For this project, we fabricate CF@ZnONRs-TiO2 and CF@ZnONRs-TiO2-AuNPs 

heterogeneous structures for the degradation of RhB, to evaluate the efficiency of the 

nanocomposite when it is decorated with AuNPs. We hypothesized that CF@ZnONRs-TiO2-

AuNPs nanocomposite is a better system for the degradation of dye pollutants and should be more 
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efficient than the binary system due to the multiple degradation pathways. There should be no 

electron-hole recombination and enhanced photocatalytic activity in the ternary composite when 

compared to the binary composite CF@ZnO-TiO2 due to the addition of the noble-metal NPs.  

 

4.2 MATERIALS AND METHODS 

A. Materials  

100% Cotton fabric used as a substrate, was purchased from a local Walmart. Sodium 

hydroxide beads, methanol, isopropyl alcohol (99%), and Triton X-100 (Polyethylene glycol tert-

octylphenyl) were purchased from VWR analytical (BDH chemicals). Titanium (IV) n-butoxide 

(Ti [O(CH2)3]4, 99+%), Ethylenediaminetetraacetic acid disodium salt dehydrate (EDTA-Na), and 

Benzoquinone (BQ) was purchased from Alfa Aesar. Ethanol Anhydrous 200 proof was purchase 

from Decon laboratories, Inc. Citric acid, anhydrous, powder, Zinc Nitrate, 6-hydrate crystals, and 

hydrochloric acid (36.5-38.0%) were purchased from J.T.Baker. Sodium borohydride (≥99%) was 

purchased from Fluka Analytical. Sodium tetrachloroaurate (III) dihydrate (≥99%) and Rhodamine 

B (RhB) were purchased from Sigma-Aldrich. Triethylamine (99%) was purchased from Acr𝑜̅𝑜s 

 

Scheme 4.1. Illustration of ZnO-TiO2 and AuNPs interfacial charge transfer process. 
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Organics. Zinc acetate, Buffer solution pH 2, Tert-butanol (T-BuOH), and 

hexamethylenetetramine were purchased from Fisher Scientific. All chemicals and solvents were 

used as received.  

B. Synthesis of ZnO Seeds Solution  

ZnO seed solution was synthesized following a literature procedure.47 In a 100 mL round 

bottom three-neck flask, 1.100 g (5.0 mmol) of zinc acetate dihydrate was dissolved with 50.0 mL 

of isopropyl alcohol to make a 100 mM solution of zinc acetate dihydrate. The mixture was reflux 

for fifteen minutes at 85.1℃ with constant stirring. After fifteen minutes, 700 µL of  

trimethylamine (5.0 mmol) was added dropwise. Resulting in a cloudy solution, the mixture was 

then refluxed for an additional ten minutes at 85.1℃. Then, cooled to room temperature and 

incubated without stirring for three hours. The solution obtained was cloudy and used within three 

days.  

C. Synthesis of ZnO Growth Solution  

ZnO growth solution was synthesized following a literature procedure.47 In a 300 mL 

beaker, 7.710 g of hexamethylenetetramine and 16.400 g of zinc nitrate were dissolved separately 

with 275.0 mL of DI water. Then, both solutions were combined in a 1000 mL Erlenmeyer flask 

and stirred at room temperature for twenty-four hours. The solution obtained was transparent. 

Creating a equimolar aqueous mixture of zinc nitrate hexahydrate and hexamethylenetetramine in 

order to grow ZnONRs on a substrate. , 

D. Synthesis of TiO2-nanosols 

TiO2-nanosols were synthesized using the method described in Chapter 3.2 section B.  
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E. Synthesis of Radical Scavengers 

In a 5 mL volumetric flask add 0.1861 g of EDTA-Na salt (100 mM) and dissolve in DI 

water. In a 5 mL volumetric flask add 0.0541 g of BQ (10 mM) and dissolve in methanol. In a 5 

mL volumetric flask add 0.0371 g of T-BuOH (100 mM) and dissolve in DI water. All solutions 

were stored at room temperature. 

F. Pretreatment 

Cotton fabric was pretreated using the method described in Chapter 3.2 section C. 

G. Fabrication of CF@ZnONRs-TiO2 Substrate 

To fabricate CF@ZnONRs substrate, five squares of the pretreated CF were first dip-

coated in the ZnO seed solution for thirty minutes and then gently rinsed with ethanol. The dip-

coated CF was then dried at 90.1℃ for one hour and air dried at room temperature for twelve 

hours. At the end of the twelve hours, samples placed in an autoclave with 50.0 mL of the growth 

solution and incubated in a kiln at 90.1℃ for eight hours. After, samples were removed from the 

autoclave and rinsed with DI water and allow to air dry at room temperature.  

To fabricate CF@ZnONRs-TiO2 substrate,  the procedure described in Chapter 3.2 section 

C for CF@TiO2 substrate fabrication was used.  
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Figure 4.2. Digital photograph of A) pretreated cotton fabric and B) fabricated CF@ZnONRs-
TiO2 substrate. 

 

Figure 4.1. Process for the fabrication of CF@ZnONRs-TiO2 substrate. 
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H. In-situ Deposition of AuNPs 

AuNPs where embedded on the CF@ZnONRs-TiO2 substrate using the in-situ method 

described in Chapter 3.2 section D.  

 

 

Figure 4.3. Digital photograph of CF@ZnONRs-TiO2-AuNPs composite material. 

 

  

Scheme 4.2. Illustration of AuNPs on the surface of ZnONRsTiO2.  
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I. Characterization 

The characterization instruments described in Chapter 3.2 section E was used for the 

ternary system characterization. 

J. Photocatalytic Study 

The photocatalytic study described in Chapter 3.2 section F was used to test the ternary 

system and conduct the recyclability study. However, for the radical trapping experiment the 

identical photocatalytic setup was used, however, 30 µL of each scavenger was add to the 3 mL of 

8 µM RhB.  

K. Gold Ion Leaching Experiment 

In additional to the recyclability study, a gold ion leaching experiment was conducted to 

observe if gold ions were leaching from the composite material. For the experiment 3.0 mL of 

8 µM RhB was degraded in the presence of CF@ZnONRs-TiO2-AuNPs composite material for a 

hundred and twenty minutes. To four separate 1.5 mL centrifuge tube 500 µL of pH 2 buffer and 

50 µL of 1 mM Benzidine was added. Then, 450 µL of unknown Au3+(solution from degradation), 

450 µL of 10 µM of Au3+, and 450 µL of DI water was added to one of the 1.5 mL centrifuge tube 

and labeled. For each mixture a UV-visible absorption spectrum was collected.48,49 

4.3 RESULTS AND DISCUSSION  

In addition to the binary nanocomposite discussed in chapter 3, a ternary nanocomposite was 

also fabricated. For the fabrication of the ternary system, cotton fabric was first coated with 

ZnONRs and characterized to confirm the presence of the ZnONRs thin layer on the fiber surface. 

The fabricated CF@ZnONRs substrate functioned as a core material for TiO2 shell doping. Using 

the TiO2 synthesis method developed in chapter two a binary composite of ZnONRs-TiO2 

core/shell nanostructure functionalized on the cotton fabric was generated. The binary composite 
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of CF@ ZnONRs-TiO2 was then embedded with AuNPs to create a ternary system. The ternary 

composite is thought to have enhanced photocatalytic properties due to the addition of the noble-

metal NPs which improves the energy harvesting capability of the modified composite. 

A. XRD Analysis 

The XRD patterns for the ternary composite is presented in figure 4.4, the patterns for 

unmodified cotton fabric, CF@AuNPs, CF@ZnONRs, CF@TiO2, and CF@ZnONRs-TiO2, and 

CF@ZnONRs-TiO2-AuNPs are shown. The characteristic peaks at 2𝜃𝜃= 14.4°, 16.2°, 22.6°, and 

34.4° matches the reference pattern for cellulose I crystalline phase ((110), (110), (200) and 

(004)).37 The addition reflection peak at 2𝜃𝜃=37.8° corresponds to the (1 1 1) crystalline phase of 

AuNPs. As discussed in chapter 3, the appearance of only one crystalline phase is due to a low 

gold uptake. The characteristic reflection peaks that appears at 2𝜃𝜃 =25.3° (1 0 1), 34.56° (0 0 4), 

47.8° (2 0 0), and 54.5° (2 1 1) are the diffraction peaks for anatase TiO2.  The reflection peaks at 

2𝜃𝜃 = 31.75°, 34.42°, 36.24°, 47.53°, 56.57°, 62.85°, 66.34°, 67.92°, and 69.06° corresponding 

to (1 0 0), (0 0 2), (1 0 1), (1 0 2), (1 1 0), (1 0 3), (2 0 0), (1 1 2), and (2 0 1) planes which 

represents references pattern for wurtzite structures of ZnO. CF@ZnONRs-TiO2 and 

CF@ZnONRs-TiO2-AuNPs nanocomposite showed no new peaks which correlates to their 

reference pattern. There are multiple explanations as to why I was not able to get diffraction peaks 

for these samples.  

The missing diffraction peaks could be related to the three-dimensional crystals not 

satisfying Bragg’s conditions, the nanostructure of TiO2 and ZnO are amorphous, and a limited 

amount of sample to quantify leading to lower intensity reflections making it challenging to detect 

from noise. Additionally, the sample could not be in crystalline phase because there is an appears 

for the cellulose I and AuNPs crystalline phase and the sample could also have less crystalline due 
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loss of a specific set of indices. The XRD technique could not confirm that I generated a ternary 

composite, therefore, I relied on the SEM/EDX data to confirm the present of ZnO, TiO2 and 

AuNPs on the surface of the fiber. 

 

 

 

Figure 4.4. XRD patterns of the ternary system samples: unmodified CF, CF@AuNPs, 
CF@TiO2, CF@ZnONRs, CF@ZnONRs-TiO2, and CF@ZnONRs-TiO2-AuNPs. The black 
diamond shape represents the diffraction pattern for CF, the red circle shape represents the 
diffraction pattern for AuNPs, the blue triangle shape represents the diffraction pattern for TiO2, 
and the green oval shape represents the diffraction pattern for CF@ZnONRs-TiO2-AuNPs. XRD 
patterns for samples were collected using a Rigaku miniflex XRD system. Data was collected 
between 2θ=5.0° and 90.0° at 5.0° per minute. 
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B. SEM Images  

The SEM images show the morphology of the ZnONRs and TiO2 thin layer used in the 

ternary composite. Figure 4.5A illustrates the SEM image for unmodified CF. The SEM image of 

the surface showed that the fibers of the substrate are rather smooth. Figure 4.5B shows the SEM 

images for the cotton fabric functionalized with ZnONRs, and the high-resolution image showed 

an angularly aligned and dense deposition of ZnONRs coated on the fibers of the fabric. A closer 

magnification of the sample could not be obtained due to instrument magnification limitations of 

the in-house SEM. The SEM images for CF@ZnONRs-TiO2 substrate is illustrated in figure 4.5C, 

from the data it was easily detected that surface deficiencies were present due to the synthesis 

method of TiO2 not being fine-tuned as discussed in chapter 3. The SEM images from the ZnONRs 

showed uniform deposition, however, once coated with TiO2 a dense layer filling the spaces 

between the fiber and nanorods is observed. Though ZnONRs can still be seen on some areas of 

the specimen, the joining layers of the ZnONRs and TiO2 embody one compressed integument 

that has cracks. To rectify this issue further investigation is needed to optimize the deposition 

procedure of TiO2. Finally, figure 4.5D shows the surface topography of CF@ZnONRs-TiO2 

AuNPs nanocomposite; however, the in-house SEM could not be magnified into the nanometer 

ranger to get a closer visual of the NPs. 
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C. EDX line Analysis 

SEM-EDX analysis was performed on the samples to identify the elemental composition 

of ZnO, TiO2, and Au present in the composite materials. Table 4.1 shows the EDX data for 

unmodified CF, CF@TiO2, CF@ZnONRs-TiO2, and CF@ZnONRs-TiO2-AuNPs nanocomposite. 

The unmodified CF showed peaks for carbon (C) and oxygen (O) with a weight percent of (33.73 

C and 66.27 O) and atom percent of (40.41 C and 59.59 O). Correlating to the reported EDX 

spectrum for cellulose fabric.40 CF@TiO2 nanocomposite showed three new peaks, with the 

strongest at 0.6 keV whose weight percent was 40.90 and atom percent was 17.72. CF@ZnONRs 

nanocomposite showed two additional peaks (Appendix B.1), with the strongest at 1.0 keV whose 

weight percent was 81.38 and atom percent was 50.63. The EDX data for CF@ZnONRs-TiO2 

 

Figure 4.5. SEM images of the ternary system samples: A) unmodified CF, B) CF@ZnONRs, C) 
CF@ZnONRs-TiO2, and D) CF@ZnONRs-TiO2-AuNPs. SEM was carried out on TESCAN 
VEGA3 SEM operating between 5.0 - 30.0 kV 
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nanocomposite showed the presence of Ti (0.6 keV) and Zn (1.0 keV) ions in the specimen which 

correlates to the EDX spectrum for CF@ZnONRs-TiO2 composites (Appendix B.2). This analysis 

confirmed the fabrication of the CF@ZnONRs-TiO2 substrate. The weight percent for Zn and TiO2 

were 7.51 and 45.91 and the atom percent for Zn and TiO2 were 2.76 and 23.05. The ternary 

composite showed the respected peaks for Ti and Zn ions plus a few shifted peaks for Au. This 

analysis confirmed the fabrication of the ternary composite CF@ZnONRs-TiO2-AuNPs 

(Appendix B.3). The characterization images provided by the SEM-EDX analysis confirmed the 

fabrication of the composite materials used in the ternary system. EDX graphs are shown in 

Appendix B.  
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Table 4.1. EDX line analysis data for ternary composite. EDX graphs are shown in appendix B.   

Materials Elements Weight % Atom % 

CF 

C K 
O K 

33.73 
66.27 
100 

40.41 
59.59 
100 

 

CF@TiO2 

C K 
O K 
Ti K 
Ti L 

13.01 
44.09 

-- 
40.90 
100 

22.48 
59.79 

-- 
17.72 
100 

CF@ZnONRs 
C K 
O K 
Zn L 

2.40 
16.22 
81.38 
100 

8.14 
41.23 
50.63 
100 

CF@ZnONRS-TiO2 

C K 
O K 
Ti K 
Ti L 
Zn L 

8.30 
38.29 

-- 
45.91 
7.51 
100 

16.62 
57.56 

-- 
23.05 
2.76 
100 

CF@ZnONRS-TiO2-AuNPs 

C K 
O K 
Ti K 
Ti L 
Zn L 
Au M 

10.42 
38.22 

-- 
39.71 
6.50 
5.15 
100 

 

20.59 
56.74 

-- 
19.69 
2.36 
0.62 
100 
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D. Photocatalytic Activity  

 The photocatalytic activity for the ternary system was evaluated equivalently to the binary 

system. The ternary system CF@ZnONRs-TiO2-AuNPs was tested to verify its photocatalytic 

properties, the assessment was done by analysis the photocatalytic degradation of aqueous RhB 

under UV irradiation. 8µM RhB (no composite), unmodified CF, and CF@ZnONRs-TiO2 were 

used as controls to evaluate the effectiveness of the CF@ZnONRs-TiO2-AuNPs composite 

material.  

The UV-visible absorption spectrum for 8µM RhB (no composite) shown in figure 4.6A, 

the illumination in the presence of 8µM RhB (no composite) showed no changes in the adsorption 

spectrum indicating the absence of active photocatalytic properties without a composite material. 

The UV-Vis absorption spectrum for unmodified CF (Fig. 4.6B) showed a slight change after 

adsorption-desorption equilibrium (thirty minutes dark). However, illumination in the presence of 

unmodified CF did not show the decrease in RhB absorption maxima indicating the absence of 

active photocatalytic properties. The binary composite CF@ZnONRs-TiO2 (Fig. 4.6C) showed 

active photocatalytic properties. However, there was also a blue shift. After thirty minutes in the 

dark, to formulate adsorption-desorption equilibrium, there was a 28% decrease in RhB with no 

significant changes to the color of the solution. The illumination of the composite lead to an 80% 

decrease in RhB concentration within ninety minutes of UV irradiation along with noticeable 

changes to the solution color.  

As discussed in chapter 3 there are two pathways with which a xanthates dye can degrade, 

while the CF@TiO2 substrate showed full cleavage of the whole chromophore structure in a series 

of step-wise intermediates, the binary composite of ZnO-TiO2 only showed N-de-alkylation of the 

chromophore skeleton. The spectrum shows the full formation of the Rhodamine (498 nm)43 N-
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de-ethylation intermediate. However, the RhB absorption band is also present validating the 

degradation pathway. Figure 4.6D shows the absorption spectrum for CF@ZnONRs-TiO2-AuNPs 

which shows active photocatalytic properties. After thirty minutes in the dark, to formulate 

adsorption-desorption equilibrium, there was a 33% decrease in RhB with no significant changes 

to the color of the solution. After illumination the ternary composite led to a 82% decrease in the 

concentration of RhB within ninety minutes of UV irradiation along with noticeable changes to 

the solution color. This result infers that the light irradiation of core/shell nanomaterials in a 

photoreaction can lead to the degradation of aqueous dye. From the study, it was concluded that 

the addition of AuNPs is strongly correlated to the high photocatalytic activity.  

 

            Figure 4.6. UV-Visible adsorption spectra of the photocatalytic degradation of  3.0 mL 8 μM  RhB 
under a UV light (365nm) in the presence of composite materials: (a) 8 μM  RhB (b) Cotton Fabric as 
a control, (c) CF@ZnONRs-TiO2  also as a control, (d) CF@ZnONRs-TiO2-AuNPs. 
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E. Gold Leaching Expeirment 

The photocatalytic data from the binary and ternary system were compared and the 

nanocomposite with the best photocatalytic data was chosen to run a gold leaching experiment to 

monitor if gold ions were leaching from the composite material. Figure 4.7 shows the UV-Visible 

adsorption spectrum for the study. Due to the absence of a absorption band at 425 nm for the 

composite material it was infer that gold ions were not leaching from the nanocomposite.  

 

            Figure 4.7. UV-Vis adsorption spectrum for gold ion leaching experiment. The photocatalytic 
degradation of  3.0 mL 8 μM  RhB under a UV light (365nm) in the presence of CF@ZnONRs-
TiO2-AuNPs.  
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F. Radical Trapping of Ternary Nanocomposite 

Using the ternary composite material a radical trapping study was conducted to observe the 

photocatalytic mechanism and to understand which radical is the active oxidative species for the 

degradation of the dye pollutant. EDTA was used for the ℎ+, BQ was used for the 𝑂𝑂2∙− radical, 

and T-BuOH was used for the 𝑂𝑂𝑂𝑂∙ radical. The scavengers were added to the photocatalytic 

reaction for 8 µM RhB under UV irradiation to monitor the oxidative species during the irradiation 

in the presences of CF@ZnONRs-TiO2-AuNPs nanocomposite. The results of the study are shown 

in figure 4.8. If EDTA or T-BuOH was added to the reaction the rate of the photocatalytic 

degradation of RhB was not affected when compared to the composite material data, the data even 

showed the reaction going faster than the composite material, which leads to the assumption that 

maybe there was charge-transfer recombination occurring. This suggested that the ℎ+ and 𝑂𝑂𝑂𝑂∙ 

radical were not the main oxidative species driving the photocatalytic process. However, when BQ 

was added withholding the 𝑂𝑂2∙− radical there was a significant decrease in the photocatalytic 

degradation of RhB suggesting that the 𝑂𝑂2∙− radical is the active oxidative species used in the 

photocatalytic process. 

 

            Figure 4.8. The photocatalytic degradation of  3.0 mL 8 μM  RhB under a UV light (365nm) in the 
presence of CF@ZnONRs-TiO2-AuNPs, with (green, blue, black) and without (red) radical scavengers.  
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4.4 CONCLUSION 

In this work we fabricate CF@ZnONRs-TiO2 and CF@ZnONRs-TiO2-AuNPs 

nanocomposite for the degradation of aqueous RhB, to evaluate the efficiency of the 

nanocomposite when it is decorated with AuNPs. Then the binary and ternary composite material 

photocatalytic degradation data were compared, the system with the best results were used to 

conduct recyclability and radical trapping study to test the recoverability and reusability of the 

nanocomposite. While the radical trapping experiment was done to observe which oxidative 

species is the main radical responsible for the photocatalytic process. I was able to fabricate 

CF@ZnONRs and CF@ZnONRs-TiO2 substrate successfully, then decorate the fabricated 

substrate (CF@ZnONRs-TiO2) with AuNPs. The composite material were characterized by XRD 

and SEM/EDX. The ternary system was successfully created and the composite material was 

shown to be capable of photocatalyzing the degradation of a dye under UV irradiation and showed 

enhanced photocatalytic performance in the presence of AuNPs.  The radical trapping experiment 

indicting that the 𝑂𝑂2∙− radical is the primary active oxidative species in the photodegradation of 

the dye.  
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Appendix A 
Binary system EDX Line analysis data.  

 

1. CF@TiO2 composite material.  
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2. CF@TiO2-AuNPs composite material.  
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Appendix B 
Ternary system EDX Line analysis data.  

 

1. CF@ZnONRs composite material.  
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2. CF@ZnONRs-TiO2 composite material.  
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3. CF@ZnONRs-TiO2-AuNPs composite material.  
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