Spring 4-29-2019

Extreme Altitude Search and Rescue Helicopter

Matthew J. De Sieno
Kennesaw State University

Anthony Chavarria
Kennesaw State University

David Stuver
Kennesaw State University

Zach Boss
Kennesaw State University

Follow this and additional works at: https://digitalcommons.kennesaw.edu/egr_srdsn

Part of the Aviation Commons, Industrial Engineering Commons, Systems Engineering Commons, and the Systems Engineering and Multidisciplinary Design Optimization Commons

Recommended Citation
De Sieno, Matthew J.; Chavarria, Anthony; Stuver, David; and Boss, Zach, "Extreme Altitude Search and Rescue Helicopter" (2019). Senior Design Project For Engineers. 24.
https://digitalcommons.kennesaw.edu/egr_srdsn/24

This Senior Design is brought to you for free and open access by the Southern Polytechnic College of Engineering and Engineering Technology at DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Senior Design Project For Engineers by an authorized administrator of DigitalCommons@Kennesaw State University. For more information, please contact digitalcommons@kennesaw.edu.
Extreme Altitude Mountain Rescue Helicopter:

Final Design Review

Matthew De Sieno, Zach Boss, David Stuver & Anthony Chavarria

Kennesaw State University

Department of Industrial and Systems Engineering

Marietta, Georgia

Aerospace Senior Design

ISYE 4803

Dr. Adeel Khalid
Executive Summary

The goal of this design was to develop an extreme altitude rescue helicopter capable of retrieving hikers stranded on top of Mount Everest. Using the Eurocopter AS350 as a baseline, a conceptual model was produced that is fully capable of hovering and delivering forward flight at the desired altitude of 8,848 meters. Combined blade element momentum theory, proper airfoil selection, and forward flight calculations were utilized in order to optimize the rotor for the given flight conditions on top of Mount Everest. Conceptual fluid dynamics and CAD modeling aided in the process of visually designing the fuselage and rotor. Not only are these visual aids available, but they also produced data on how the fuselage and rotor will react to the environment around them. Other analyses were introduced in order to accurately calculate the economic feasibility, the reliability, and the efficiency of the overall system.
Table of Contents:

- Executive Summary 1
- Table of Contents: 2
- List of Figures: 5
- List of Tables 10
- List of Equations 10
- Chapter 1: Introduction 12
 - Introduction 12
 - System Overview 12
 - Objectives 13
 - Justification 13
 - Project Background 13
 - Problem Statement 14
- Chapter 2: Literature Review 15
- Chapter 3: Problem Solution 18
 - Problem Solving Approach 18
 - Requirements 18
 - UML Use Case Diagram 19
 - GANTT Chart 19
 - Mission Profile 20
 - Responsibilities 21
 - Resources Available 21
- Chapter 4: Blade and Hover Performance 22
 - Airfoil Selection 22
 - Rotor Sizing 23
 - Blade Design 24
 - Disk Loading and Power Loading 25
 - Figure of Merit 26
- Chapter 5: Performance 27
Blade Design Three 82

Appendix E: Airfoil Graphs 88

Appendix F: Other Graphs and Figures 93
List of Figures:

Figure 2-1. SA315B Lama helicopter [3]... 16
Figure 2-2. SA135B Lama Helicopter technical details [3]...................................... 16
Figure 2-3. AS350B3 helicopter [4].. 17
Figure 3-1. Gantt Chart ... 19
Figure 3-2. Mission Profile... 20
Figure 4-1. ONERA OA209 Airfoil [6]... 22
Figure 4-2. NACA 63-015A Airfoil [6].. 22
Figure 4-3. SIKORSKY SC2110 Airfoil [6]... 22
Figure 4-4. Stall or no stall figure. ... 23
Figure 5-1. Forward flight at 4600 ft. ... 29
Figure 5-2. Forward flight at 12400 ft. ... 29
Figure 5-3. Forward flight at 29527 ft. ... 30
Figure 5-4. Rate of climb at 4600 ft... 31
Figure 5-5. Rate of climb at 12400 ft... 32
Figure 5-6. Rate of climb at 29527 ft... 32
Figure 5-7. Rotor trade studies (Power) ... 33
Figure 5-8. Rotor trade studies (Max Speed) ... 34
Figure 5-9. Rotor Trade Studies (Cruise Speed) ... 34
Figure 5-10. Trade Studies (Range Speed).. 35
Figure 5-11. Rotor Trade Studies (RoC) ... 35
Figure 6-1. Sample SolidWorks Setup. .. 37
Figure 6-2. Rotational Frame Setup. ... 37
Figure 6-3. Airflow During Hover at Sea Level .. 38
Figure 6-4. Airflow During Hover at Everest .. 38
Figure 6-5. Pressure Across vs. Rotor Length During Hover Sea Level 39
Figure 6-6. Pressure Across vs. Rotor Length During Hover Summit 40
Figure 6-7. Induced Air Velocity vs Rotor Length During Hover Sea Level 40
Figure 6-8. Induced Air Velocity vs Rotor Length During Hover Summit 41
Figure 6-9. Airflow During Cruise at Sea Level .. 42
Figure 6-10. Airflow During Cruise at Summit ... 42
Figure 6-11. Pressure During Cruise at Sea Level .. 43
Figure 6-12. Pressure During Cruise at Sea Level .. 43
Figure 6-13. Induced Air Velocity vs Rotor Length During Cruise at Sea Level 44
Figure 6-14. Induced Air Velocity vs Rotor Length During Cruise at Summit 44
Figure 7-1. Conceptual Sketch .. 46
Figure 7-2. Conceptual layout Sketch ... 46
Figure 7-3. Sketch view from top ... 47
Figure 7-4. Front Sketch view .. 47
Figure 7-5. Side View ... 47
Figure 7-6. Isometric View. ... 48
Figure 7-7. Internal View .. 48
Figure 7-8. Required power at different heights ... 49
Figure 7-9. Service Ceiling ... 50
Figure 7-10. GE CT7-8A ... 50
Figure 7-11. Weight Estimates ... 52
Figure 7-12 Diagram ... 53
Figure 7-13. Reliability ... 54
Figure 7-14. Hoist ... 55
Figure 7-15. Hoist Specifications ... 55
Figure 7-16. Avionics ... 56
Figure 7-17. Transmission sketch ... 57
Figure 7-18. Transmission CAD ... 57
Figure 7-19. Transmission CAD side view .. 58
Figure 7-20. Transmission CAD complete view .. 58
Figure 7-21. Density vs price ... 59
Figure 7-22. Fracture toughness vs Tensile Strength 59
Figure 7-23. Yield vs Fatigue ... 60
Figure 7-24. Max Temperature ... 60
Figure D-1. Inflow vs Nondimensional R (sea level) 70
Figure D-2. Cl loss vs Nondimensional flow (sea level) 70
Figure D-3. Ct vs Nondimensional R (sea level) .. 71
Figure D-4. inflow loss vs nondimensional r (1402.08) 71
Figure D-5 Cl Loss vs Non-dimensional Radial Position, r (1402.08 meters) 72
Figure D-6 Ct Loss vs Non-dimensional Radial Position, r (1402.08 meters) 72
Figure D-7 Inflow Loss vs Non-dimensional Radial Position, r (3779.52 meters) 73
Figure D-8 Cl Loss vs Non-dimensional Radial Position, r (3779.52 meters) 73
Figure D-9 Ct Loss vs Non-dimensional Radial Position, r (3779.52 meters) ... 74
Figure D-10 Inflow Loss vs Non-dimensional Radial Position, r (8869.68 meters) 74
Figure D-11 Cl Loss vs Non-dimensional Radial Position, r (8869.68 meters) .. 75
Figure D-12 Ct Loss vs Non-dimensional Radial Position, r (8869.68 meters) .. 75
Figure D-13 Inflow Loss vs Non-dimensional Radial Position, r (Sea Level) ... 76
Figure D-14 Cl Loss vs Non-dimensional Radial Position, r (Sea Level) .. 76
Figure D-15 Ct Loss vs Non-dimensional Radial Position, r (Sea Level) .. 77
Figure D-16 Inflow Loss vs Non-dimensional Radial Position, r (1402.08 meters) 77
Figure D-17 Cl Loss vs Non-dimensional Radial Position, r (1402.08 meters) .. 78
Figure D-18 Ct Loss vs Non-dimensional Radial Position, r (1402.08 meters) .. 78
Figure D-19 Inflow Loss vs Non-dimensional Radial Position, r (3779.52 meters) 79
Figure D-20 Cl Loss vs Non-dimensional Radial Position, r (3779.52 meters) .. 79
Figure D-21 Ct Loss vs Non-dimensional Radial Position, r (3779.52 meters) .. 80
Figure D-22 Inflow Loss vs Non-dimensional Radial Position, r (8869.68 meters) 80
Figure D-23 Cl Loss vs Non-dimensional Radial Position, r (8869.68 meters) .. 81
Figure D-24 Ct Loss vs Non-dimensional Radial Position, r (8869.68 meters) .. 81
Figure D-25 Inflow Loss vs Non-dimensional Radial Position, r (Sea Level) ... 82
Figure D-26 Cl Loss vs Non-dimensional Radial Position, r (Sea Level) .. 82
Figure D-27 Ct Loss vs Non-dimensional Radial Position, r (Sea Level) .. 83
Figure D-28 Inflow Loss vs Non-dimensional Radial Position, r (1402.08 meters) 83
Figure D-29 Cl Loss vs Non-dimensional Radial Position, r (1402.08 meters) .. 84
Figure D-30 Ct Loss vs Non-dimensional Radial Position, r (1402.08 meters) .. 84
Figure D-31 Inflow Loss vs Non-dimensional Radial Position, r (3779.52 meters) 85
Figure D-32 Cl Loss vs Non-dimensional Radial Position, r (3779.52 meters)................................. 85
Figure D-33 Ct Loss vs Non-dimensional Radial Position, r (3779.52 meters)................................. 86
Figure D-34 Inflow Loss vs Non-dimensional Radial Position, r (3779.52 meters)............................. 86
Figure D-35 Cl Loss vs Non-dimensional Radial Position, r (8869.68 meters)................................. 87
Figure D-36 Ct Loss vs Non-dimensional Radial Position, r (8869.68 meters)................................. 87
Figure E-37. Cl/Cd vs Alpha and Cd vs Alpha.. 88
Figure E-38. Cl v Cd and Cl v Alpha... 88
Figure E-39. Cm v alpha .. 89
Figure E-40. Cl v Cd and Cl v alpha... 89
Figure E-41. Cl/Cd v Alpha and Cd v alpha ... 90
Figure E-42. Cm v alpha .. 90
Figure E-43. Cl/Cd v Alpha and Cd v alpha ... 91
Figure E-44. Cl v Cd and Cl v alpha... 91
Figure E-45. Cm v alpha .. 92
Figure F-46 UML Case Diagram.. 93
List of Tables

Table 4-1. Power Loading at different altitudes ... 26
Table 4-2. Figure of merit at different altitudes ... 27
Table 5-1. Speeds at different altitudes ... 30
Table 7-1. Fuel estimates ... 51
Table 9-1: Overall Evaluation Criteria ... 65

List of Equations

Equation 1 ... 24
Equation 2 ... 24
Equation 3 ... 24
Equation 4 ... 25
Equation 5 ... 25
Equation 6 ... 25
Equation 7 ... 25
Equation 8 ... 25
Equation 9 ... 27
Equation 10 .. 27
Equation 11 .. 27
Equation 12 .. 27
Equation 13 .. 28
Equation 14 .. 28
Equation 15 .. 28
Equation 16 .. 28
Equation 17 .. 28
Equation 18 .. 49
Equation 19 .. 62
Equation 20 .. 63
Equation 21 .. 65
Equation 22 .. 65
Equation 23 .. 65
Chapter 1: Introduction

Introduction

Located in Nepal, Mount Everest is one of the tallest mountains in the world that is summited by many hikers each year. Even though summiting Everest is a very impressive feat, there are very high risks involved because of how remote and how tall the mountain is. If hikers ever run into any issues that require urgent medical attention, they must be escorted down the mountain by foot. If time is of the essence, evacuating hikers by foot may cost lives if dire medical attention is needed. The next best option would be to life flight hikers off the mountain, but that option is currently unavailable because most rotorcraft are not designed to operate at an altitude where the density of air is so thin. Due to these unique design challenges, the Vertical Flight Society has tasked students to overcome these design challenges in the form of a competition sponsored by Airbus.

System Overview

When tackling a rotorcraft design of this nature, the system must be designed with major components in mind. This means that it is important to optimize the components within the rotorcraft with the entire system in mind and not each individual component. To ensure that the rotorcraft being designed is functional, it will often be compared to the Airbus H125.
Objectives

The goal and main objective for this project and the competition is to develop a conceptual design for a rotorcraft capable of performing rescue missions up to the highest altitudes in the world.

Justification

Today serial helicopters, based on multi-purpose design trade-offs, with known good high-altitude performance are somewhat adapted to allow high altitude mountain rescue operations in extreme conditions. However, no rotorcraft model is available today that has been specifically designed for this specific task.

Project Background

On May 14, 2005, the Airbus H125 (then called the AS350 B3) piloted by Didier Delsalle, was recorded as completing the highest helicopter landing and takeoff at 8,848 meters (29,029 feet) on Mount Everest – the highest point on earth – an unbeatable title it still holds alone today.

However, evacuating people during helicopter rescue missions in such extreme altitudes is not possible today and remains an immense challenge, for the rotorcraft as well as for the crew, even in lower altitudes. Freezing temperatures, thin air and hostile weather conditions with oftentimes degraded visual environment all contribute to making rescue work in high-altitude environments particularly dangerous.

As the environment changes very rapidly, getting relevant information for mission preparation and possible mission adjustments can be of similar importance as rotorcraft performance.
Problem Statement

What would a rotorcraft look like when specifically designed to perform emergency medical services up to the highest peaks of the planet? What technologies could enable such a vehicle? Could it be used for other purposes as well?
Chapter 2: Literature Review

Mount Everest is the tallest mountain of the world; it summits at 8850 m. (29035 ft.) [1]. Many people climb this mountain every year. In 2018, about 347 permits were given by the Nepali government to climbers. A total 261 of these climbers got to the summit along with 302 Sherpas, while on the north side an estimated 239 people made it to the summit [2]. This accounts for a total of 802 people making the summit out of an approximate 888 climbers.

Climbing Mount Everest is a very difficult task, many factors have to be considered like the weather which changes dramatically and the extreme lack of oxygen. All of these cause many problems for climbers with death being the worst case scenario. The overall death rate for Mount Everest is about 1.2 percent. From 1923 to 1999, 1169 people made it to the summit and 170 died for a death rate of about 14.5 percent. During the years of 2000 and 2018 there were 7990 summits with a total of 123 deaths for a rate of 1.5 percent [2]. Even though the rate has dropped through the years, it is still a very dangerous climb and accidents happen leading to the need of a helicopter that can go to the top to save or help people.

The task taken was to make a helicopter that could fly all the way to the top of the mountain. There have been little to none helicopters that can reach high altitudes. The highest altitude flight in a helicopter was done on June 21st of 1972 by Pilot Jean Bulet. The helicopter used was a SA315B Lama helicopter and it was flown to approximately 12442 m. (40820 ft.) [3]. This helicopter is shown in the following figures:
Figure 2-1. SA315B Lama helicopter [3].

Figure 2-2. SA135B Lama Helicopter technical details [3].
The highest helicopter rescue was done by an AS350B3 from Eurocopter [4]. This helicopter can be seen in the following figure:

![AS350B3 Helicopter](image_url)

Figure 2-3. AS350B3 helicopter [4].

The rescue occurred at about 23000 feet in the year 2014 [4]. This helicopter also was able to get to the summit of Mount Everest in the year 2005 piloted by Didier Delsalle [5]. Since this is the only helicopter that could fly at the required altitudes, we used it as the baseline of our design.
Chapter 3: Problem Solution

Problem Solving Approach

In order to design this helicopter to satisfy the design competition the helicopter will need to be designed in three parts: Main Rotor, Tail Rotor, and Fuselage. Mathematical models will be the first step in verification of the design and solving the problem. Simple momentum theory and then blade element theory will be conducted to ensure the validity of initial designs. Once initial designs are completed Blade Element Momentum Theory will be done to refine the vehicle along with CFD analysis via SolidWorks. All mathematical and computer models will need to be calculated at the various flight conditions and mission requirements as detailed in Design Requirements. Finally, physical 3D modeling and production will be made to showcase final design.

Requirements

The rotorcraft must have an internal or external hoist system that is weighed at 300 kg (661.4 lbs.). The rotorcraft must also be controllable at all flight conditions. Due to the strong winds of the mountains, the control systems must be capable of maintaining a controllable hover with wind up to 74 km/h at 8870m. The rotor must also be configured with an avionics system that meets the FAA requirements for day and night operations. A cruise speed that is above 259 km/h for leg one is also recommended in order to complete the mission in the given time.
UML Use Case Diagram

UML is a way to visualize functionality within a system. Usually, functions stem from a specific “actor” or object. In this case, the pilot can be the actor. Communications, navigation, and control systems all branch off the pilot as you can see in Figure F-1, which is located in Appendix F. This gives us a high-level overview of the complete system regarding the pilot of the helicopter. Use case diagrams can also help us debug our existing system and plan for overall requirements and objectives [13].

GANTT Chart

![Gantt Chart Image]

Figure 3-1. Gantt Chart.
Mission Profile

Figure 3-2. Mission Profile.

Leg 1: Transfer flight from international to smaller airport for refueling

- **Atmosphere:** International Standard Atmosphere + 20
- **Payload:** 3 crew + 330.693 lbs EMS equipment (892.872 lbs)
- **Take off from 4,600 ft, duration 2 minutes in hover**
- **Climb to 12,400 ft & cruise for 73 nautical miles**
- **Landing at 12,400 ft, duration 2 minutes in hover with 10% fuel margin**
- 20 minutes of refueling

Leg 2: Take off from smaller airport, rescue mission, and return to smaller airport

- - **Takeoff at 12,400 ft, duration 2 minutes in hover**
- - **Climb to 29,100 ft and level cruise for 15 nautical miles**
- - **Hover out of ground effect @ 29,100 ft for 30 minutes**
- - **Payload increases: 3 crew + 2 Passengers + 330.693 lbs EMS equipment (1267.66 lbs)**
- - **Descent to 12,400 ft and level cruise for 15 nautical miles**
- - **Landing at 12,400 ft, duration 2 minutes in hover with 10% fuel margin**
Leg 3: Refueling and return with passengers to larger airport

- 20 minutes of refueling
- Takeoff at 12,400 ft, duration 2 minutes in hover
- Descent to 4,600 ft and level cruise for 73 nautical miles
- Landing at 4,600 ft, duration 2 minutes in hover with 10% fuel margin

Responsibilities

All the members of the group will work together to achieve the main objective of the project. The following are the team assignments:

- Matthew De Sieno – Project Manager, Systems Engineer
- Zach Boss – Systems Engineer, Avionics Specialist
- David Stuver – Aerodynamics & CAD Specialist
- Anthony Chavarria - Aerodynamic & Propulsion Specialist

Resources Available

Below are the required software packages used in the design of the vehicle:

1) Arena
2) Autodesk: AutoCAD 2019
3) Lingo/Lindo v17
4) MathWorks: MATLAB ver. R2018a
5) Microsoft Office 2019
6) SolidWorks 2019
Chapter 4: Blade and Hover Performance

Airfoil Selection

The airfoil of a rotor blade of a helicopter is an important factor in its performance. For the H125, the rotors have the OA209 airfoil which can be seen in the following picture:

Figure 4-1. ONERA OA209 Airfoil [6].

The main characteristic of this airfoil is that it has 0.008 zero lift drag coefficient. The smaller the zero lift drag coefficient of an airfoil, the less parasitic drag the helicopter will have. With this said, the team looked for other airfoils used in rotorcraft that could have less zero lift drag coefficient and two were found. They are the Sikorsky SC2110 and the NACA 63-015A. They can be seen in the following figures [6]:

Figure 4-2. NACA 63-015A Airfoil [6]

Figure 4-3. SIKORSKY SC2110 Airfoil [6].
These two airfoils have the main characteristic of having a value of 0.005 for their zero lift drag coefficient. The Sikorsky airfoil was chosen since it is thinner and requires less weight. The corresponding Cl/Cd. Drag polar and other important airfoil graphs are in appendix E.

Rotor Sizing

For rotor sizing, a spreadsheet was made to calculate the average lift coefficient depending on the radius of the main rotor. Power, tip speed, thrust coefficient and solidity were all calculated to determine and select a rotor size. The following figure shows these calculations:

<table>
<thead>
<tr>
<th>Rotor Radius (m)</th>
<th>3.8</th>
<th>4.0</th>
<th>4.2</th>
<th>4.4</th>
<th>4.6</th>
<th>5.0</th>
<th>5.2</th>
<th>5.4</th>
<th>5.6</th>
<th>5.8</th>
<th>6.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (m²)</td>
<td>45.3646</td>
<td>50.26548</td>
<td>55.41769</td>
<td>60.82123</td>
<td>66.4761</td>
<td>72.38229</td>
<td>74.69355</td>
<td>78.53902</td>
<td>84.94807</td>
<td>91.60884</td>
<td>96.52035</td>
</tr>
<tr>
<td>Power (W)</td>
<td>5252.129</td>
<td>4985.523</td>
<td>4751.92</td>
<td>4535.953</td>
<td>4338.715</td>
<td>4175.363</td>
<td>4083.128</td>
<td>3956.161</td>
<td>3830.089</td>
<td>3699.543</td>
<td>3560.945</td>
</tr>
<tr>
<td>Tip speed (m/s)</td>
<td>155.1947</td>
<td>163.3628</td>
<td>171.311</td>
<td>179.6991</td>
<td>187.8672</td>
<td>196.0354</td>
<td>199.1193</td>
<td>204.2035</td>
<td>212.3717</td>
<td>220.5398</td>
<td>228.7079</td>
</tr>
<tr>
<td>Cl</td>
<td>0.047016</td>
<td>0.038235</td>
<td>0.031505</td>
<td>0.026156</td>
<td>0.021935</td>
<td>0.018468</td>
<td>0.017343</td>
<td>0.016566</td>
<td>0.013400</td>
<td>0.011529</td>
<td>0.009968</td>
</tr>
<tr>
<td>Solidity</td>
<td>0.217848</td>
<td>0.207051</td>
<td>0.197191</td>
<td>0.188228</td>
<td>0.180044</td>
<td>0.177543</td>
<td>0.174643</td>
<td>0.170041</td>
<td>0.159277</td>
<td>0.153371</td>
<td>0.147894</td>
</tr>
<tr>
<td>Cl average</td>
<td>1.29432</td>
<td>1.109717</td>
<td>0.958616</td>
<td>0.833747</td>
<td>0.729567</td>
<td>0.647924</td>
<td>0.561872</td>
<td>0.481016</td>
<td>0.404416</td>
<td>0.360065</td>
<td>0.328005</td>
</tr>
<tr>
<td>Stall</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>k</td>
<td>1.22</td>
</tr>
<tr>
<td>Induced Power (kW)</td>
<td>640.7998</td>
<td>608.7218</td>
<td>579.735</td>
<td>553.3834</td>
<td>529.2233</td>
<td>507.2681</td>
<td>499.3816</td>
<td>486.9774</td>
<td>488.2475</td>
<td>450.9095</td>
<td>434.8013</td>
</tr>
<tr>
<td>Profile Power (W)</td>
<td>9924.715</td>
<td>12194.95</td>
<td>14180.88</td>
<td>17829.98</td>
<td>21231.55</td>
<td>25266.71</td>
<td>26965.34</td>
<td>29748.41</td>
<td>32601.43</td>
<td>40472.38</td>
<td>46895.69</td>
</tr>
<tr>
<td>Total Power (kW)</td>
<td>650.8845</td>
<td>620.9067</td>
<td>594.5459</td>
<td>571.2234</td>
<td>550.9348</td>
<td>533.5348</td>
<td>526.2669</td>
<td>516.7258</td>
<td>503.0489</td>
<td>491.3774</td>
<td>481.6111</td>
</tr>
</tbody>
</table>

Figure 4-4. Stall or no stall figure.

It can be seen that the lower the radius, the higher the average lift coefficient. The minimum radius that can be chosen was 4 meters. It can also be seen that as the radius is smaller, the induced power increases while the tip speed decreases.

Three main rotor designs were chosen. The first design was using a radius of 4.876 m. (16 ft.), a chord of 0.67056 m. (2.2 ft.), and four blades. The second design was using a radius of 5 m. (16.4042 ft.), a chord of 0.33528 m. (1.1 ft.), and three blades. The third design was using a radius of 5.2 m. (17.0604 ft.), a chord of 0.9 m. (2.95276 ft.), and four blades.
Blade Design

To help out with the blade design calculations, we used the combined blade element momentum theory. It combines the basic principles of the blade element theory and momentum theory. With assumptions, BEMT allows the inflow distribution across the blade to be estimated. According to the theory, the rotor blade will no longer have a uniform inflow. The goal is to minimize total power and maximize the figure of merit. The rotor blade will also have a very high pitch angle near the root, which in turn causes the rotor to stall near the root.

To make our calculations even more accurate, we decided to incorporate Prandtl's Tip-loss Function to accommodate for the loss of lift near the tips, which is shown below [11]:

\[F = \left(\frac{2}{\pi} \right) \cos^{-1}(\exp(-f)) \]

Equation 1

where “f” is:

\[f = \frac{N_b}{2} \frac{1 - r}{r \phi} \]

Equation 2

In our analysis, we essentially solved for the total inflow velocity at different altitudes (sea level, 1402.08 meters, 3779.52 meters, and 8868.68 meters) with the following equation [11]:

\[\lambda(r) = \frac{C_{t\alpha}}{16F} \left(1 + \frac{32F}{\sigma C_{l\alpha}} \theta r - 1 \right) \]

Equation 3

Once the inflow ratio is calculated, we then used it to calculate the coefficient of thrust over the blade and the coefficient of lift. While comparing different degrees of twist (0°, 5°, 10°, and 20°), we were able to represent the effect of altitude on inflow, thrust, and lift across different sections of the blade. The coefficient of thrust steadily increases as you go across the blade and
then it rapidly decreases at the tip. The coefficient of lift is the highest near the root of the blade and then it decreases across the blade. As we added twist to the blade, the inflow, Ct and Cl increased near the root of the blade and then decreased the near the tip. These results can be seen in Appendix D. Some other major equations that we used can be seen below:

\[\lambda_{r_n} = \frac{\sigma C_l}{16} \left(1 + \frac{32}{\sigma C_l} \theta (r_n) r_n - 1 \right) \]

Equation 4

\[\theta_0 = \frac{6c_T}{\sigma C_l} - 3 \theta_{tw} + \frac{3}{2} \sqrt{\frac{c_T}{2}} \]

Equation 5

\[\frac{dc_T}{dr} = 4F \lambda^2 r \]

Equation 6

\[\phi = \tan^{-1} \left(\frac{\dot{u}_p}{\dot{u}_t} \right) \approx \frac{\dot{u}_p}{\dot{u}_t} \text{ for small angles} \]

Equation 7

\[\alpha = \theta - \phi = \theta - \frac{\dot{u}_p}{\dot{u}_t} \]

Equation 8

Disk Loading and Power Loading

Disk Loading and power loading are two parameters normally used for helicopters. Disk Loading is T/A where T stands for the thrust and A is the area of the main rotor. Power loading is defined as T/P where T is also thrust and P is the power required at hover. The following figure shows normal trends for helicopters [7]:

[25]
For our helicopter, the thrust is 4960 lbs. while the area of the rotor is 804 ft\(^2\). This gives us a disk loading of 6.16 lbs./ft\(^2\). Power Loading can be calculated at 4 heights, and can be seen in the following table:

Table 4-1. Power Loading at different altitudes

<table>
<thead>
<tr>
<th>Height (ft)</th>
<th>Power (hp)</th>
<th>Thrust (lbs.)</th>
<th>Power Loading (lbs./hp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea Level</td>
<td>551</td>
<td>4960</td>
<td>9</td>
</tr>
<tr>
<td>4600</td>
<td>561</td>
<td>4960</td>
<td>8.8</td>
</tr>
<tr>
<td>12400</td>
<td>607</td>
<td>4960</td>
<td>8.2</td>
</tr>
<tr>
<td>29527</td>
<td>785</td>
<td>4960</td>
<td>6.31</td>
</tr>
</tbody>
</table>

As can be seen from the table, the higher the altitude, the more power is required hence power loading drops.

Figure of Merit

The figure of merit of a helicopter is another measure used to see the efficiency at hover the following equation is used to find the FoM:
\[FM = \frac{\text{Ideal power required to hover}}{\text{Actual power required to hover}} < 1 \]

Equation 9

In the case of our helicopter, the FoM is presented in the following table:

<table>
<thead>
<tr>
<th>Altitude</th>
<th>Figure of Merit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL</td>
<td>0.809018568</td>
</tr>
<tr>
<td>4600</td>
<td>0.838461538</td>
</tr>
<tr>
<td>12400</td>
<td>0.883054893</td>
</tr>
<tr>
<td>29527</td>
<td>0.948669202</td>
</tr>
</tbody>
</table>

Table 4-2. Figure of merit at different altitudes

It can be seen that the higher the altitude the better FoM at hover the helicopter has.

Chapter 5: Performance

Forward Flight

With the hover performance calculations completed, the next step is calculating how fast the rotorcraft can move and how much power it will require. The equations used to calculate these curves are the following:

\[\mu = \frac{V_\infty}{\Omega R} \]

Equation 10

\[T \sin \alpha_{TPP} = D \]

Equation 11

\[T \cos \alpha_{TPP} = W \]

Equation 12

\[T = 2\rho Av \sqrt{(V_\infty \cos \alpha_{TPP})^2 + (V_\infty \sin \alpha_{TPP} + v)^2} \]
There are three main altitudes that are important, 4600 ft, 12400 ft and 29100 ft which is the summit of Mount Everest. For our purposes, we are making our rotorcraft be able to hover at a higher altitude than the summit which would be around 29527 ft (9000 m). The following power curves were obtained:

\[P_i = Tv \]
\[P_o = \frac{\sigma C_{d_0}}{8} [1 + 4.6\mu^2] \]
\[P_d = \frac{1}{2} \rho V_\infty^3 f \]
\[DV_\infty = \left[\frac{1}{2} \rho V_\infty^2 C_D S \right] V_\infty \]
Figure 5-1. Forward flight at 4600 ft.

Figure 5-2. Forward flight at 12400 ft.
The power curves show that the power required for hover rises as altitude goes up. For hover at 4600 ft., power required is 567 HP, at 12400 ft., the power needed is 615 HP while at max altitude the power required is 798 Hp. Other variables like max speed, best cruise speed and best range speed are different, and these changes can be seen in the following figure:

![Power curve 29527 ft](image)

Figure 5-3. Forward flight at 29527 ft.

<table>
<thead>
<tr>
<th>Altitude (ft)</th>
<th>Best Cruise Speed (ft/s)</th>
<th>Best Range Speed (ft/s)</th>
<th>Max Speed (ft/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4600</td>
<td>90</td>
<td>135</td>
<td>295</td>
</tr>
<tr>
<td>12400</td>
<td>105</td>
<td>135</td>
<td>295</td>
</tr>
<tr>
<td>29527</td>
<td>135</td>
<td>180</td>
<td>280</td>
</tr>
</tbody>
</table>
Rate of Climb

Another aspect that can be looked at is the rate of climb. The rate of climb is important in a helicopter because it tells us how fast it can climb. The following figures show the rate of climb at each height:

Figure 5-4. Rate of climb at 4600 ft.
As can be seen, at higher altitudes the climb rate is smaller because the power available is less than at lower altitudes.
Rotor Trade Studies

Rotor trade Studies were done to compare different designs and pick the best one. The following rotor parameters were used in this comparison:

1) Rotor Diameter of 32 feet and a chord of 2.2 feet with 4 blades.
2) Rotor Diameter of 32.8 feet and a chord of 2.6 feet with 5 blades.
3) Rotor Diameter of 34.1 feet and a chord of 3 feet with 4 blades.

The following figures were obtained to compare these rotors in aspects like rate of climb, power at hover, max speed, best cruise speed and best range speed:

Figure 5-7. Rotor trade studies (Power)
Figure 5-8. Rotor trade studies (Max Speed)

Figure 5-9. Rotor Trade Studies (Cruise Speed)
Figure 5-10. Trade Studies (Range Speed)

Looking at these graphs, the rotor 1 design is better in respects to max speed, power at hover and cruise speed. It is also tied for best in climb rate and best range speed.
Chapter 6: Fluid Analysis

As part of the requirements of the project, a 3D modeling of fluid analysis needed to be completed. In order to do this the helicopter was modeled within Solid Works 2018 and then a flow simulation conducted. The goal of these calculations is twofold, one to double check the hand calculations, and two to locate any points of failure in the helicopter design. By utilizing the built in flow simulation module, a rough verification of the hand calculations could be made via analysis of the pressure and velocity of the flow around the aircraft. These calculations were done ISA +0 and ISA + 20 at Sea Level and at 29,527ft at both hover and at cruise speeds.

Flow Analysis Setup

The first round of simulations was set during hover using a simplified model of the aircraft. Figures 6-1 shows an example setup of the simulations using SolidWorks Flow Simulation 2018.
Figure 6-1. Sample SolidWorks Setup.

After setup a rotational fluid zone was set around the rotor blades in order to simulate the rotating region of the blades as shown in Figure 6-2.

Figure 6-2. Rotational Frame Setup.
Computational domain was set to automatic and the data for each situation was collected.

Hover Simulations:

For simulating the conditions of hover, the x, y, and z components of flows was set to zero in the general flow settings. Then the atmospheric pressures and densities were set to 101325 Pa and Temperatures to 288.15°K.

Figure 6-3. Airflow During Hover at Sea Level

Figure 6-4. Airflow During Hover at Everest
Here the simulations show that with the increase of altitude the flow induced by the blades will increase substantially in order to account for the lower air density. This is consistent with the BEMT Calculations and Performance calculations as noted previously in the paper. However, SolidWorks Flow Simulation 2018 is not properly designed for rotating blade systems and cannot be used for accurate simulation of thrusts and drag on the rotor blades.

Figure 6-5. Pressure Across vs. Rotor Length During Hover Sea Level
Figure 6-6. Pressure Across vs. Rotor Length During Hover Summit

Figure 6-7. Induced Air Velocity vs Rotor Length During Hover Sea Level
Figure 6-8. Induced Air Velocity vs Rotor Length During Hover Summit

The graphical representations of pressure and induced velocity experienced along the blade axis were made to ensure that the flow generated by the SolidWorks Flow Simulation was indeed correct in direction. As shown in Figures 6-5 and 6-6, the pressures greater than the ambient pressure thus generating lift. However, much of the lift is lost due to tip losses and vortex shedding. Figures 6-7 and 6-8 shows the velocity across the span of both the blades at the advancing and retreating side. During hover these should remain similar in shape with a majority of induced velocity occurring at around 80% the blade length while dropping off significantly toward the hub and tip of the blades. This is proven in the simulations.

Cruise Simulations

The next part of the simulations measured the pressure and velocities during cruise conditions. Setup was similar to hover conditions however the Y-axis was set to -1.5 m/s flow
direction and the Z-axis was set to -27 m/s flow velocity in order to simulate the freestream velocity during cruise conditions.

As shown in the Figures 6-9 and 6-10, the airflow around the rotors creates some vortexes along the tip of the blades, however it is much more diminished in comparison to the hover conditions. This is because the blades are able to rotate through clean air during its cruise speed.
Figure 6-11. Pressure During Cruise at Sea Level

Figure 6-12. Pressure During Cruise at Sea Level
Figure 6-13. Induced Air Velocity vs Rotor Length During Cruise at Sea Level

Figure 6-14. Induced Air Velocity vs Rotor Length During Cruise at Summit
The pressure and velocity graphs show an interesting facet of forward flight in that the retreating blade experiences less lift than the advancing blade because of the rotational component of the blades. This can cause some major disturbances under extreme conditions but both simulations show that the helicopter still produces lift at both sea level and operating altitude. The dissymmetry of lift can be most clearly seen in the sea level calculations, while the high-altitude simulations have a much less dissymmetry. This is most likely because the helicopter has a much higher angle of attack at high altitude thus limiting the effects of the dissymmetry, however in future work high level analysis will need to be conducted in order to verify these results.

Chapter 7: Helicopter Architecture

Fuselage Design

The base cabin size of the H125 is not optimized for the mission. We decided to stretch it in order to fit the semi-large stretchers for the hikers. The stretchers measure out to about 7.5 ft. We also had to accommodate for the doctor’s seat and the medical supplies. Unfortunately, the feet of the stretchers will be against the back wall of the cabin. Also, there is space in between the stretchers for the doctor to tend to both hikers at once. During the design phase of the aircraft, we played around with the placement of the access door for the cabin. We eventually decided on having on the side of the cabin with the hoist system on the edge. The door will also slide to the side for easy access.
Figure 7-1. Conceptual Sketch

Figure 7-2. Conceptual layout Sketch
Figure 7-3. Sketch view from top

Figure 7-4. Front Sketch view

Figure 7-5. Side View
The fuselage also had to accommodate the crew, two stretchers and injured personnel, and medical supplies and finally a hoist system. This meant that the internals of the helicopter had to be increased to a size of 17’ by 6.5’ with a 11.5’ rear bay for ease of loading stretchers as shown in Figure 7-7.
Engine Selection

To find what engine was needed that can have enough power at those high altitudes, a spreadsheet was made to find the service ceiling where several values were calculated like density, power at hover for main rotor and tail rotor as well as power of the engine at those densities. We also used the following relationship to obtain the engine power:

$$\frac{P}{P_{\text{sea-level}}} = \frac{\rho}{\rho_{\text{sea-level}}}$$

Equation 18

The following is an extract of the spreadsheet with the three altitudes:

<table>
<thead>
<tr>
<th>h, ft</th>
<th>4599.7377</th>
<th>12401.58</th>
<th>29527.56</th>
</tr>
</thead>
<tbody>
<tr>
<td>rho (slugs/ft^3)</td>
<td>0.0019345</td>
<td>0.001512</td>
<td>0.000684</td>
</tr>
<tr>
<td>A MR (ft^2)</td>
<td>804.24772</td>
<td>804.2477</td>
<td>804.2477</td>
</tr>
<tr>
<td>A TR (ft^2)</td>
<td>29.224666</td>
<td>29.22467</td>
<td>29.22467</td>
</tr>
<tr>
<td>V MR (ft/s)</td>
<td>39.924978</td>
<td>45.1567</td>
<td>60.8173</td>
</tr>
<tr>
<td>sigma MR</td>
<td>0.1750794</td>
<td>0.17507</td>
<td>0.17507</td>
</tr>
<tr>
<td>sigma TR</td>
<td>0.2087278</td>
<td>0.208728</td>
<td>0.208728</td>
</tr>
<tr>
<td>Vtip MR (ft/s)</td>
<td>653.45127</td>
<td>653.4513</td>
<td>653.4513</td>
</tr>
<tr>
<td>Vtip TR (ft/s)</td>
<td>652.8439</td>
<td>652.8439</td>
<td>652.8439</td>
</tr>
<tr>
<td>P MR (lba*ft/s^2)</td>
<td>289094.15</td>
<td>310382.9</td>
<td>388487.3</td>
</tr>
<tr>
<td>Q MR (lbs*ft/s)</td>
<td>7078.579</td>
<td>7998.842</td>
<td>9512.258</td>
</tr>
<tr>
<td>T TR (lbs)</td>
<td>352.16811</td>
<td>378.1016</td>
<td>473.2466</td>
</tr>
<tr>
<td>v TR (ft/s)</td>
<td>55.808327</td>
<td>65.40402</td>
<td>98.54827</td>
</tr>
<tr>
<td>P TR (lbs*ft/s)</td>
<td>26029.93</td>
<td>31774.02</td>
<td>57782.32</td>
</tr>
<tr>
<td>P req (hp)</td>
<td>572.95288</td>
<td>622.1035</td>
<td>811.3993</td>
</tr>
<tr>
<td>P avail (hp)</td>
<td>2350.0138</td>
<td>1837.037</td>
<td>1012.763</td>
</tr>
<tr>
<td>R/C(ft/min)</td>
<td>11823.187</td>
<td>8083.229</td>
<td>1339.72</td>
</tr>
</tbody>
</table>

Figure 7-8. Required power at different heights

Using the spreadsheet, it was found that to be able reach a service ceiling of 29527 ft, the power required of the engine is of 2550 hp. After extensive search, there was no engine that had that amount of power, the engines were either lower or higher. Two options were considered, having our rotorcraft have one engine with high power or two engines each with low power. Two engines normally bring too much weight, for this reason we selected one engine that had higher power. At the end, the selection was the CT7-8A7 engine from the General Electric Aero Engine company it gives 3000 hp total power. The calculations were done again using this engine's power and including an installation loss of 10%. The following graph was what was obtained:
Figure 7-9. Service Ceiling

It can be seen that the service ceiling for this engine and our rotor is at about 32000 feet.

The following is a picture of the engine selected:

Figure 7-10. GE CT7-8A
The CT7-8 family of engines is described by the GE company as the following: “The highest reliability of any engines in its class, the CT7-8 engine provides maximum mission performance. Certified by the FAA in April 2004, the CT7-8 combines advanced, state-of-the-art technology with mission proven T700 design architecture. Designed for increased durability with commercially proven components, these powerful engines feature Full Authority Digital Electrical Control (FADEC) for better cockpit information and reduced pilot workload. The CT7-8 proudly powers a variety of multi role aircraft including the S92, AW101, and NH90.”

The most important aspects of the CT7-8A7 is that it weighs 537 lbs. and has a specific fuel consumption of 0.45 lb./h/hp.

Weight Calculations

With the engine selected and the forward flight power curve made, weight estimations were made. The following tables give us an idea of the weight available for several parts of the helicopter:

<table>
<thead>
<tr>
<th>Leg 1</th>
<th>Time (hours)</th>
<th>Power Needed (hp)</th>
<th>Fuel Needed (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hover (TO)</td>
<td>0.0333333333</td>
<td>567</td>
<td>8.505</td>
</tr>
<tr>
<td>Climb</td>
<td>0.009803922</td>
<td>355</td>
<td>1.566176471</td>
</tr>
<tr>
<td>Cruise</td>
<td>0.675</td>
<td>676</td>
<td>205.335</td>
</tr>
<tr>
<td>Hover (Land)</td>
<td>0.0333333333</td>
<td>607</td>
<td>9.105</td>
</tr>
<tr>
<td>Total</td>
<td>0.751470588</td>
<td></td>
<td>224.5111765</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leg 2</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hover (TO)</td>
<td>0.0333333333</td>
<td>615</td>
<td>9.225</td>
</tr>
<tr>
<td>Climb</td>
<td>0.029367284</td>
<td>374</td>
<td>4.942513889</td>
</tr>
</tbody>
</table>
In Table 6.1, the fuel consumption was calculated based on each leg of the mission. The second leg of the mission is the one that requires the most amount of fuel. Since there is refueling before each leg, the fuel tank should be capable of carrying at least 282 lbs. of fuel. For this matter, it was decided that a fuel tank that could carry 350 lbs. of fuel to have some reserve would be adequate.

In the second figure, the itemization of the weight can be seen. The payload which includes the crew members, equipment, and patients is of 575 kg, the hoist is 53 kg, fuel is 159 kg, engine is 244 kg and that leaves 1218 kg for the fuselage and rotors. All of this amounts to a grand total of 2250 kg. Once final fuselage weight calculations are done and total weight is found, all calculation can be remade to the required weight.
Failure Mode & Effect Analysis

Largely used when analyzing a system, the failure mode and effect analysis (FMEA) allows engineers to identify the modes in which a system will fail and the effects that these failures will have on said system. In order to accurately conduct this analysis, the system must be broken down into specific components in order to identify where specific failures may occur.

Figure 7-12 Diagram.

Referencing the system breakdown above, the rescue helicopter is broken down into three main components. These components include the avionics, rotor, tail rotor, and their various subsystems. Combining this breakdown with empirical data, the reliability of the helicopter can be calculated. According to the FAA, not only do most crashes occur during takeoff and landing but they are often caused by human error. Other sources of information, including the National Transportation & Safety Board, also point in the direction that human error is the likely cause of most incidents. As seen below, the calculations produced an extremely high reliability for the current design of our system.
The hoist system that was chosen for our helicopter is the Skyhoist 800 by JENOPTIX. It can be seen in the following figure:

Figure 7-13. Reliability
Figure 7-14. Hoist

The SkyHoist 800 is a lightweight hoist system that can carry more than the minimum required 300 kg of weight. The following figure gives a summary of the hoist’s specifications:

<table>
<thead>
<tr>
<th>Technical specifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. lifting load capacity</td>
<td>760 lbs (@ 197 ft/min)</td>
</tr>
<tr>
<td></td>
<td>350 kg (@ 1.0 m/s)</td>
</tr>
<tr>
<td>Max. lifting speed</td>
<td>390 ft/min (@ < 330 lb)</td>
</tr>
<tr>
<td></td>
<td>2.0 m/s (@ < 150 kg)</td>
</tr>
<tr>
<td>System target weight</td>
<td>max. 110 lb</td>
</tr>
<tr>
<td></td>
<td>max. 50 kg</td>
</tr>
<tr>
<td>Cable length</td>
<td>max. 390 ft</td>
</tr>
<tr>
<td></td>
<td>max. 120 m</td>
</tr>
<tr>
<td>Power supply</td>
<td>28 V DC, 150 A (or 115 V AC)</td>
</tr>
<tr>
<td>Power consumption</td>
<td>approx. 4.2 kW</td>
</tr>
</tbody>
</table>

Figure 7-15. Hoist Specifications
Avionics

When considering the conditions of Everest, top of the line flight control systems and avionics must be incorporated in order to give pilots the best chance possible in order to complete the mission at hand. To meet these conditions, an integrated flight deck must be utilized in order to supply all the information he or she needs. A Garmin 3000H is a good example of the flight deck which can be seen to the right. Integrated flight decks remove all the clutter of conventional avionics and incorporate all the instruments needed into a few touch screen displays.

From a human machine system aspect, an integrated flight deck is one of the better choices because it provides a high reliability under the given local operating conditions.

Transmission

The transmission of the helicopter will consist of a main gear box that will reduce the RPM’s of the engine in two different speeds. It will have a top part with a gear ratio of 56.26:1 to reduce the speed of the engine from 21945 RPM to 390 RPM for the main rotor. It will also have a bottom part that will have a reduction ratio of 3.57:1 to the tail drive shaft for a speed of 6132 RPM. The tail rotor drive shaft will be separated into 8 sections and go down to the tail gear box that changes the direction of the shaft to 90 degrees and have a gear reduction ratio of 3:1 for a tail rotor speed of 2044 RPM. The following is a rough schematic of the transmission architecture.
Figure 7-17. Transmission sketch

Figure 7-18. Transmission CAD
Materials

Material selection is also an important process in making a helicopter. For aircraft there are various materials that can be used to build the fuselage and other parts, some of these are titanium alloys, aluminum alloys, carbon fiber and metallic composites. All of these materials vary with density, price and other aspect. The following graphs show a comparison of these materials:
Figure 7-21. Density vs price

Figure 7-22. Fracture toughness vs Tensile Strength
These graphs show various properties of the materials that are important to consider when building a helicopter. In the first graph we can see that the titanium alloys have higher densities and are somewhat expensive while carbon fiber has really low density but is the most expensive.
In the second and third graphs it can be seen that titanium alloys have higher strength and fatigue strength while the others are a bit lower. In the last graph we can see that titanium alloys have better temperature resistance than the rest. With these aspects, we could consider that the part where the engine is located can be made with titanium alloys since it is hotter. The rotor can be made of a carbon fiber composite since it is less likely to fracture from stresses and the fuselage can be made of aluminum alloys or a metal composite with graphite epoxy. The important parts like gears, etc. will be made of steel.
Chapter 8: Cost Analysis

In our cost analysis, we decided to use the “RAND DAPCA IV Model.” This model estimates the hours required for RDT&E and production by the engineering, manufacturing, and quality groups. These are then multiplied by the corresponding hourly rates to give estimated costs [10]. The total cost can then be calculated by using the following equation:

\[
RDT&E + flyaway = H_E R_E + H_T R_T + H_M R_M + H_Q R_Q + C_D + C_F + C_M + C_{eng} N_{eng} + C_{avionics}
\]

Equation 19

\[
H_E = \text{Eng Hours}, \quad R_E = \text{Eng.hourly rate}, \quad H_T = \text{Tooling Hours},
\]

\[
R_T = \text{Tooling Hour rate}, \quad H_M = Mfg hours,
\]

\[
R_M = \text{Manufacturing Hourly rate}, \quad H_Q = QC hours,
\]

\[
R_Q = \text{Quality Control hourly Rate}, \quad C_D = \text{Devel support cost},
\]

\[
C_F = \text{Flt Test Cost}, \quad C_M = Mfg Materials Cost,
\]

\[
C_{eng} = \text{Eng Production Cost},
\]

\[
N_{eng} = \text{total production quantity times number of engines per aircraft},
\]

\[
C_{avionics} = \text{cost of avionics}
\]

The results showed if we produced more of the new helicopter, the less it will cost. If we produced one unit, then it will roughly come out to be $100,000,000. However, if we produced 40-50 units, then it will be in the $2,000,000 range. Realistically, 2-5 units will be manufactured for production on top of the 10 units that will be used for testing purposes. The next step would be to estimate the crew costs. This is done by using the equation seen below:

\[
Three - \text{man crew cost} = 94.5 \left(\frac{V_c W_0}{10^5} \right)^{0.3} + 237.2
\]
Equation 20

\[V_c = \text{cruise velocity}, W_0 = \text{Take off gross weight} \]

By using this equation, we were able to determine that it will roughly cost $375 per block hour ($1125 for the entire three-hour mission) for a three-man crew to operate the hovercraft [10].
Chapter 9: Conclusion

The final conceptual design of the helicopter meets all the needs required for it to complete the overall mission profile. The final weight of the rotorcraft is at 4960 lbs. (2250 kg.) and has enough space to carry three crew members, two patients and the required medical equipment. The helicopter comes with a hoist that can carry a rated weight of 660 lbs. (300 kg.) and a reliable avionics system. The GE CT7-8AF engine selected will have enough power to take the helicopter to the top of Mount Everest considering the loss of power because of low air density. Theoretical analysis showed that it has max speeds of almost 300 ft/s (91.4 m/s) and will be able to complete the mission in the required three-hour timeframe. This analysis also showed that it can withstand the crosswinds of 67 ft/s (20 m/s) that are present at the top of the mountain. CFD analysis using SolidWorks showed that it can produce enough thrust to carry the helicopter to the top. And finally, cost analysis showed that with the production of about 50 units in five years, the helicopter would cost around two million dollars which is comparable to other helicopters. This helicopter would be of great support to all the mountain climbers of Mount Everest and other highest peaks of the world while being able to save the lives of those that need it.

Overall Evaluation Criteria

To effectively evaluate our design, we needed to create an overall evaluation criteria system. This system allowed us to evaluate multiple objectives that our helicopter was set out to do by using a single numerical index. In our table, we gave our six main objectives (speed, weight, height, time, power, and passengers) a worst and best value. Sense of the Quality Characteristic (QC) indicates the desire of the specific objective. This ranges from “Bigger,”
“Nominal,” and “Smaller.” The OEC column is an overall grade for the objective [14]. The equations can be seen below:

\[
Bigger \ OEC = \frac{Final \ Results - Worst \ Value}{Best \ Value - Worst \ Value} \times Weighted \% \tag{21}
\]

\[
Nominal \ OEC = (1 - \frac{Final \ Results - Best \ Value}{Best \ Value - Worst \ Value}) \times Weighted \% \tag{22}
\]

\[
Smaller \ OEC = (1 - \frac{Final \ Results - Best \ Value}{Best \ Value - Worst \ Value}) \times Weighted \% \tag{23}
\]

Table 9-1: Overall Evaluation Criteria

<table>
<thead>
<tr>
<th>Objectives</th>
<th>Worst Value</th>
<th>Best Value</th>
<th>QC</th>
<th>Weighting</th>
<th>Final Results</th>
<th>OEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed (ft/s)</td>
<td>100</td>
<td>461.83</td>
<td>Bigger</td>
<td>30</td>
<td>290</td>
<td>15.75325</td>
</tr>
<tr>
<td>Weight (lbs)</td>
<td>12000</td>
<td>2000</td>
<td>Smaller</td>
<td>5</td>
<td>4960</td>
<td>3.52</td>
</tr>
<tr>
<td>Height (ft)</td>
<td>10000</td>
<td>30000</td>
<td>Bigger</td>
<td>40</td>
<td>29527</td>
<td>39.054</td>
</tr>
<tr>
<td>Time of Mission (hrs)</td>
<td>3</td>
<td>2</td>
<td>Smaller</td>
<td>10</td>
<td>2.5</td>
<td>5</td>
</tr>
<tr>
<td>Power Output (HP)</td>
<td>5000</td>
<td>900</td>
<td>Smaller</td>
<td>5</td>
<td>3000</td>
<td>2.439024</td>
</tr>
<tr>
<td>Passenger Capability</td>
<td>2</td>
<td>5</td>
<td>Nominal</td>
<td>10</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>75.76628</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 10: References

Appendix A: Acknowledgements

We would like to acknowledge the following people and entities:

- Our Senior Design Advisor Professor Adeel Khalid for the help provided throughout all the semester.
- Airbus and the Vertical Flight Society for providing the project.
- Kennesaw State University and the Department of Systems and Industrial Engineering.
Appendix B: Contact Information

Anthony Chavarria
 Email: Legendlink@gmail.com
 Phone: 404-528-8276

Matthew De Sieno
 Email: mttdsn1@gmail.com
 Phone: 770-315-4099

David Stuver
 Email: stuver.david.k@gmail.com
 Phone: 952-657-8022

Zach Boss
 Email: zboss23@gmail.com
 Phone: 404-435-0281
Appendix C: Reflections

Although projects of this caliber can be incredibly tough and time consuming, it was a great learning experience for everyone involved. The most challenging portion of the project was transitioning the conceptual model into a working CAD model. After completing the CAD portion, the model was refined and stressed using many flow simulations provided by Solid Works. Once the CAD model was complete, a 3D printer was utilized in order to give us a physical model. The rotor and tail rotor were printed separately from the fuselage and assembled once they were complete. Moving forward with the project, the CAD model will be refined until it exceeds our expectations.
Appendix D: BEMT Figures

Blade Design One:

Figure D-1. Inflow vs Nondimensional R (sea level)

Figure D-2. Cl loss vs Nondimensional flow (sea level)
Figure D-3. Ct vs Nondimensional R (sea level)

Figure D-4. Inflow loss vs nondimensional r (1402.08)
Figure D-5 Cl Loss vs Non-dimensional Radial Position, r (1402.08 meters)

Figure D-6 Ct Loss vs Non-dimensional Radial Position, r (1402.08 meters)
Figure D-7 Inflow Loss vs Non-dimensional Radial Position, r (3779.52 meters)

Figure D-8 Cl Loss vs Non-dimensional Radial Position, r (3779.52 meters)
Figure D-9 Ct Loss vs Non-dimensional Radial Position, r (3779.52 meters)

Figure D-10 Inflow Loss vs Non-dimensional Radial Position, r (8869.68 meters)
Figure D-11 Cl Loss vs Non-dimensional Radial Position, r (8869.68 meters)

Figure D-12 Ct Loss vs Non-dimensional Radial Position, r (8869.68 meters)
Blade Design Two

Figure D-13 Inflow Loss vs Non-dimensional Radial Position, r (Sea Level)

Figure D-14 Cl Loss vs Non-dimensional Radial Position, r (Sea Level)
Figure D-15 Ct Loss vs Non-dimensional Radial Position, \(r \) (Sea Level)

Figure D-16 Inflow Loss vs Non-dimensional Radial Position, \(r \) (1402.08 meters)
Figure D-17 Cl Loss vs Non-dimensional Radial Position, r (1402.08 meters)

Figure D-18 Ct Loss vs Non-dimensional Radial Position, r (1402.08 meters)
Figure D-19 Inflow Loss vs Non-dimensional Radial Position, r (3779.52 meters)

Figure D-20 Cl Loss vs Non-dimensional Radial Position, r (3779.52 meters)
Figure D-21 Ct Loss vs Non-dimensional Radial Position, r (3779.52 meters)

Figure D-22 Inflow Loss vs Non-dimensional Radial Position, r (8869.68 meters)
Figure D-23 Cl Loss vs Non-dimensional Radial Position, r (8869.68 meters)

Figure D-24 Ct Loss vs Non-dimensional Radial Position, r (8869.68 meters)
Blade Design Three

Figure D-25 Inflow Loss vs Non-dimensional Radial Position, r (Sea Level)

Figure D-26 Cl Loss vs Non-dimensional Radial Position, r (Sea Level)
Figure D-27 Ct Loss vs Non-dimensional Radial Position, r (Sea Level)

Figure D-28 Inflow Loss vs Non-dimensional Radial Position, r (1402.08 meters)
Figure D-29 Cl Loss vs Non-dimensional Radial Position, r (1402.08 meters)

Figure D-30 Ct Loss vs Non-dimensional Radial Position, r (1402.08 meters)
Figure D-31 Inflow Loss vs Non-dimensional Radial Position, \(r (3779.52 \text{ meters}) \)

Figure D-32 Cl Loss vs Non-dimensional Radial Position, \(r (3779.52 \text{ meters}) \)
Figure D-33 Ct Loss vs Non-dimensional Radial Position, \(r \) (3779.52 meters)

Figure D-34 Inflow Loss vs Non-dimensional Radial Position, \(r \) (8869.68 meters)
Figure D-35 Cl Loss vs Non-dimensional Radial Position, r (8869.68 meters)

Figure D-36 Ct Loss vs Non-dimensional Radial Position, r (8869.68 meters)
Appendix E: Airfoil Graphs

Sikorsky SC 2110

Figure E-37. Cl/Cd vs α and Cd vs α

Figure E-38. Cl v Cd and Cl v α
Figure E-39. C_m v alpha

Onera OA209

Figure E-40. C_l v C_d and C_l v α
Figure E-41. Cl/Cd v Alpha and Cd v alpha

Figure E-42. Cm v alpha
Figure E-43. Cl/Cd v Alpha and Cd v alpha

Figure E-44. Cl v Cd and Cl v alpha
Figure E-45. Cm v alpha
Appendix F: Other Graphs and Figures

Figure F-46 UML Case Diagram